日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

Preprint

Connectivity at fine scale: Mapping structural connective fields by tractography of short association fibres in vivo

MPS-Authors
/persons/resource/persons199444

Attar,  Fakhereh Movahedian       
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons180061

Kirilina,  Evgeniya       
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons189347

Edwards,  Luke       
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons241055

Haenelt,  Daniel       
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons188645

Pine,  Kerrin       
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20053

Trampel,  Robert       
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons83851

Chaimow,  Denis       
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons147461

Weiskopf,  Nikolaus       
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

Attar_pre.pdf
(プレプリント), 9MB

付随資料 (公開)

Attar_pre_Suppl.pdf
(付録資料), 14MB

引用

Attar, F. M., Kirilina, E., Edwards, L., Haenelt, D., Pine, K., Trampel, R., Chaimow, D., & Weiskopf, N. (2024). Connectivity at fine scale: Mapping structural connective fields by tractography of short association fibres in vivo. bioRxiv. doi:10.1101/2024.04.30.591798.


引用: https://hdl.handle.net/21.11116/0000-000F-3E6D-3
要旨
The extraordinary number of short association fibres (SAF) connecting neighbouring cortical areas is a prominent feature of the large gyrified human brain. The contribution of SAF to the human connectome is largely unknown because of methodological challenges in mapping them. We present a method to characterise cortico–cortical connectivity mediated by SAF in topologically organised cortical areas. We introduce the ‘structural connective fields’ (sCF) metric which specifically quantifies neuronal signal propagation and integration mediated by SAF. This new metric complements functional connective field metrics integrating across contributions from short- and long-range white matter and intracortical fibres. Applying the method in the human early visual processing stream, we show that SAF preserve cortical functional topology. Retinotopic maps of V2 and V3 could be predicted from retinotopy in V1 and SAF connectivity. The sCF sizes increased along the cortical hierarchy and were smaller than their functional counterparts, in line with the latter being additionally broadened by long-range and intracortical connections. In vivo sCF mapping provides insights into short-range cortico– cortical connectivity in humans comparable to tract tracing studies in animal research and is an essential step towards creating a complete human connectome.