Carbonate system; Chemostat; CO<sub>2</sub>; <span style='font-style: italic'>Emiliania huxleyi</span>; Stoichiometry; Temperature
Abstract :
[en] The present study investigates the combined effect of phosphorous limitation, elevated partial pressure of CO2 (pCO2) and temperature on a calcifying strain of Emiliania huxleyi (PML B92/11) by means of a fully controlled continuous culture facility. Two levels of phosphorous limitation were consecutively applied by renewal of culture media (N:P = 26) at dilution rates (D) of 0.3 d− 1 and 0.1 d− 1. CO2 and temperature conditions were 300, 550 and 900 μatm pCO2 at 14 °C and 900 μatm pCO2 at 18 °C. In general, the steady state cell density and particulate organic carbon (POC) production increased with pCO2, yielding significantly higher concentrations in cultures grown at 900 μatm pCO2 compared to 300 and 550 μatm pCO2. At 900 μatm pCO2, elevation of temperature as expected for a greenhouse ocean, further increased cell densities and POC concentrations. In contrast to POC concentration, C-quotas (pmol C cell− 1) were similar at D = 0.3 d− 1 in all cultures. At D = 0.1 d− 1, a reduction of C-quotas by up to 15% was observed in the 900 μatm pCO2 at 18 °C culture. As a result of growth rate reduction, POC:PON:POP ratios deviated strongly from the Redfield ratio, primarily due to an increase in POC. Ratios of particulate inorganic and organic carbon (PIC:POC) ranged from 0.14 to 0.18 at D = 0.3 d− 1, and from 0.11 to 0.17 at D = 0.1 d− 1, with variations primarily induced by the changes in POC. At D = 0.1 d− 1, cell volume was reduced by up to 22% in cultures grown at 900 μatm pCO2. Our results indicate that changes in pCO2, temperature and phosphorus supply affect cell density, POC concentration and size of E. huxleyi (PML B92/11) to varying degrees, and will likely impact bloom development as well as biogeochemical cycling in a greenhouse ocean.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Borchard
Borges, Alberto ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Händel, Nicole
Engel, Anja
Language :
English
Title :
Biogeochemical response of Emiliania huxleyi (PML B92/11) to elevated CO2 and temperature under phosphorous limitation: A chemostat study
Publication date :
2011
Journal title :
Journal of Experimental Marine Biology and Ecology
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Banse K. Uptake of inorganic carbon and nitrate by marine plankton and the Redfield ratio. Global Biogeochem. Cycles 1994, 8:81-84.
Barcelos e Ramos J., Müller M.N., Riebesell U. Short-term response of the coccolithophore Emiliania huxleyi to an abrupt change in seawater carbon dioxide concentrations. Biogeosciences 2010, 7:177-186.
Beardall J., Giordano M. Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Functional Plant Biology 2002, 29:335-347.
Beardall, J., Roberts, S., Raven, J.A., 2005. Regulation of inorganic carbon acquisition by phosphorus limitation in the green alga Chlorella emersonii, pp. 859-864.
Berry L., Taylor A.R., Lucken U., Ryan K.P., Brownlee C. Calcification and inorganic carbon acquisition in coccolithophores. Functional Plant Biology 2002, 29:289-299.
Boyd P.W., Doney S.C. Modelling regional responses by marine pelagic ecosystems to global change. Geophys. Res. Lett. 2002, 29:1806.
Caldeira K., Wickett M.E. Anthropogenic carbon and ocean pH. Nature 2003, 425:365-365.
Caperon J. Population growth response of Isochrysis galbana to nitrate variation at limiting concentrations. Ecology 1968, 49:866-872.
Delille, B., Harlay, J., Zondervan, I., Jacquet, S., Chou, L., Wollast, R., Bellerby, R.G.J., Frankignoulle, M., Borges, A.V., Riebesell, U., Gattuso, J.P., 2005. Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi. Global Biogeochemical Cycles 19, GB2023.
Dickson A. The carbon dioxide system in sea water: equilibrium chemistry and measurements. Guide to best practices for ocean acidification research and data reporting 2010, 260. Publications Office of the European Union, Luxembourg. U. Riebesell, V.J. Fabry, L. Hansson, J.-P. Gattuso (Eds.).
Dickson A.G., Millero F.J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A. Oceanographic Research Papers 1987, 34:1733-1743.
Dickson A.G., Wesolowski D.J., Palmer D.A., Mesmer R.E. Dissociation constant of bisulfate ion in aqueous sodium chloride solutions to 250 C. J. Phys. Chem. 1990, 94:7978-7985.
Droop M.R. Vitamin B12 and Marine Ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. Journal of the Marine Biological Association of the UK 1968, 48:689-733.
Egge J.K., Thingstad T.F., Larsen A., Engel A., Wohlers J., Bellerby R.G.J., Riebesell U. Primary production during nutrient-induced blooms at elevated CO2 concentrations. Biogeosciences 2009, 6:877-885.
Engel A. Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton. Journal of Plankton Research 2002, 24:49-53.
Engel A., Goldthwait S., Passow U., Alldredge A. Temporal decoupling of carbon and nitrogen dynamics in a mesocosm diatom bloom. Limnol. Oceanogr. 2002, 47:753-761.
Engel A., Thoms S., Riebesell U., Rochelle-Newall E., Zondervan I. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 2004, 428:929-932.
Engel, A., Ramos, J.B.e., Geider, R., Hutchins, D., Lee, C., Rost, B., Röttgers, R., Thingstad, F., 2010. Organic and export production, element ratios. Measurements of CO2 sensitive processes. in: Guide for Best Practices in Ocean Acidification Research and Data Reporting (eds.): Riebesell U, Fabry V and J-P Gattuso.
Engel A., Zondervan I., Aerts K., Beaufort L., Benthien A., Chou L., Delille B., Gattuso J.P., Harlay J., Heemann C., Hoffmann L., Jacquet S., Nejstgaard J., Pizay M.D., Rochelle-Newall E., Schneider U., Terbrueggen A., Riebesell U. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnol. Oceanogr. 2005, 50:493-507.
Eppley R.W., Peterson B.J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 1979, 282:677-680.
Fabry V.J. Ocean science - marine calcifiers in a high-CO2 ocean. Science 2008, 320:1020-1022.
Feng Y., Warner M.E., Zhang Y., Sun J., Fu F.X., Rose J.M., Hutchins D.A. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology 2008, 43:87-98.
Fritz J.J. Carbon fixation and coccolith detachment in the coccolithophore Emiliania huxleyi in nitrate-limited cyclostats. Mar. Biol. 1999, 133:509-518.
Fritz J.J., Balch W.M. A light-limited continuous culture study of Emiliania huxleyi: determination of coccolith detachment and its relevance to cell sinking. Journal of Experimental Marine Biology and Ecology 1996, 207:127-147.
Gattuso J.-P., Gao K., Lee K., Rost B., Schulz K. Approaches and tools to manipulate the carbonate chemistry. Guide to best practices for ocean acidification research and data reporting 2010, 260. Publications Office of the European Union, Luxembourg. U. Riebesell, V.J. Fabry, L. Hansson, J.-P. Gattuso (Eds.).
Geider R.J., LaRoche J. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology 2002, 37:1-17.
Giordano M., Beardall J., Raven J.A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Plant Biology 2005, 56:99-131.
Gran G. Determination of the equivalence point in potentiometric titrations of seawater with hydrochloric acid. Oceanology Acta 1952, 5:209-218.
Grasshoff K., Kremeling K., Ehrhardt M. Methods of Seawater Analysis; Third, Completely Revised and Extended Edition 1999, Wiley-VHC.
Guillard R.R.L., Ryther J.H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Canadian Journal of Microbiology 1962, 8:229-239.
Hoppe C., Langer G., Rokitta S., Wolf-Gladrow D., Rost B. On CO2 pertubation experiments: over-determination of carbonate chemistry reveals inconsistencies. Biogeosciences Discussions 2010, 7:1707-1726.
Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., 2001. Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel of Climate Change.
Hutchins D.A., Pustizzi F., Hare C.E., DiTullio G.R. A shipboard natural community continuous culture system for ecologically relevant low-level nutrient enrichment experiments. Limnology and Oceanography-Methods 2003, 1:82-91.
Iglesias-Rodriguez M.D., Halloran P.R., Rickaby R.E.M., Hall I.R., Colmenero-Hidalgo E., Gittins J.R., Green D.R.H., Tyrrell T., Gibbs S.J., von Dassow P., Rehm E., Armbrust E.V., Boessenkool K.P. Phytoplankton calcification in a high-CO2 world. Science 2008, 320:336-340.
Koeve W., Kim H.-C., Lee K., Oschlies A. Potential impact of DOC accumulation on fCO2 and carbonate ion computations in ocean acidification experiments. Biogeosciences Discussions 2011, 8:3797-3827.
Koroleff F., Grasshof K. Determination of nutrients. Methods of Seawater Analyses 1983, 125-188. Weinheim, Verlag Chemie. K. Grasshof, M. Erhardt, K. Kremling (Eds.).
Langer G., Nehrke G., Probert I., Ly J., Ziveri P. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 2009, 6:2637-2646.
Langer, G., Gussone, N., Nehrke, G., Riebesell, U., Eisenhauer, A., Thoms, S., 2007. Calcium isotope fractionation during coccolith formation in Emiliania huxleyi: Independence of growth and calcification rate. Geochemistry Geophysics Geosystems 8.
Langer, G., Geisen, M., Baumann, K.H., Klas, J., Riebesell, U., Thoms, S., Young, J.R., 2006. Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochemistry Geophysics Geosystems 7.
LaRoche J., Rost B., Engel A. Bioassays, batch culture and chemostat experimentation. Guide to Best Practices for Ocean Acidification Research and Data Reporting 2010, 260. Publications Office of the European Union, Luxembourg. U. Riebesell, V.J. Fabry, L. Hansson, J.-P. Gattuso (Eds.).
Leonardos N., Geider R.J. Elevated atmospheric carbon dioxide increases organic carbon fixation by Emiliania huxleyi (Haptophyta), under nutrient-limited high-light conditions. J. Phycol. 2005, 41:1196-1203.
Lewis, E., Wallace, D., 1998. Program Developed for CO2 System Calculations. ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.
Meehl, G., Stocker, T., Collins, W., Friedlingstein, P., Gaye, A., Gregory, J., Kitoh, A., Knutti, R., Murphy, J., Noda, A., Raper, S., Watterson, I., Weaver, A., Zhao, Z.-C., 2007. Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change In: Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.) (Ed.).
Mehrbach C., Culberso Ch., Hawley J.E., Pytkowic Rm. Measurement of apparent dissociation-constants of carbonic-acid in seawater at atmospheric pressure. Limnol. Oceanogr. 1973, 18:897-907.
Millero F.J. Thermodynamics of the carbon-dioxide sysetm in the ocean. Geochimica Et Cosmochimica Acta 1995, 59:661-677.
Monod J. La technique de culture continue: theorie et applications. Ann. I. Pasteur Paris 1950, 79:390.
Mucci A. The solubility of calcite and aragonite in seawater at various salinities, temperature and one atmosphere total pressure. Am. J. Sci. 1983, 283:780-799.
Müller M.N., Schulz K.G., Riebesell U. Effects of long-term high CO2 exposure on two species of coccolithophores. Biogeosciences 2010, 7:1109-1116.
Myklestad S., Haug A., Larsen B. Production of carbohydrates by the marine diatom Chaetoceros affinis var Willei (Gran) In Hustedt II: preliminary investigation of the extracellular polysaccharide. Journal of Experimental Marine Biology and Ecology 1972, 9:137-144.
Nielsen M.V. Photosynthetic characteristics of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) exposed to elevated concentrations of dissolved inorganic carbon. J. Phycol. 1995, 31:715-719.
Novick A., Szilard L. Description of the Chemostat. Science 1950, 112:715-716.
Paasche E. A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi. Physiology Plantarum Supplement 1964, 3:1-82.
Paasche E. Roles of nitrogen and phosphorus in coccolith formation in Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology 1998, 33:33-42.
Paasche E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 2002, 40:503-529.
Raupach M.R., Marland G., Ciais P., Le Quere C., Canadell J.G., Klepper G., Field C.B. Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:10288-10293.
Raven J., Caldeira K., Elderfield H., Hoegh-Guldberg O., Liss P., Riebesell U., Shepherd J., Turley C., Watson A. Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide 2005, The Royal Society, London, UK.
Redfield, A.C., Ketchum, B.M., Richards, F.A., 1963. The influence of organism on the composition of seawater. In: Hill, M.N. (Ed.), The sea. Wiley, pp. 26-77.
Riebesell, U., Fabry, V., Hansson, L., Gattuso, J.-P., 2010. Guide to Best Practices in Ocean Acidification Research and Data Reporting.
Riebesell U., Zondervan I., Rost B., Tortell P.D., Zeebe R.E., Morel F.M.M. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 2000, 407:364-367.
Riebesell U., Schulz K.G., Bellerby R.G.J., Botros M., Fritsche P., Meyerhofer M., Neill C., Nondal G., Oschlies A., Wohlers J., Zollner E. Enhanced biological carbon consumption in a high CO2 ocean. Nature 2007, 450. (545-U510).
Riegman R., Stolte W., Noordeloos A.A.M., Slezak D. Nutrient uptake and alkaline phosphatase (ec 3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. J. Phycol. 2000, 36:87-96.
Rost, B., Riebesell, U., 2004. Coccolithophores and the biological pump: responses to environmental changes. In: Thierstein, H.R., Young, J.R. (Eds.), Coccolithophores. From Molecular Processes to Global Impact, pp. 99-127.
Rost B., Zondervan I., Wolf-Gladrow D. Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions. Mar. Ecol. Prog. Ser. 2008, 373:227-237.
Rost B., Riebesell U., Burkhardt S., Sultemeyer D. Carbon acquisition of bloom-forming marine phytoplankton. Limnol. Oceanogr. 2003, 48:55-67.
Sarmiento, J.L., Slater, R., Barber, R., Bopp, L., Doney, S.C., Hirst, A.C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S.A., Stouffer, R., 2004. Response of ocean ecosystems to climate warming. Global Biogeochem. Cycles 18, GB3003.
Schulz K.G., Ramos J.B.E., Zeebe R.E., Riebesell U. CO2 perturbation experiments: similarities and differences between dissolved inorganic carbon and total alkalinity manipulations. Biogeosciences 2009, 6:2145-2153.
Sciandra A., Harlay J., Lefèvre D., Lemée R., Rimmelin P., Denis M., Gattuso J.-P. Response of the coccolithophorid Emiliania huxleyi to elevated pCO2 under nitrate limitation. Mar. Ecol. Prog. Ser. 2003, 261:111-122.
Shaked Y., Xu Y., Leblanc K., Morel F.M.M. Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: implications for Zn-P co-limitation in the ocean. Limnol. Oceanogr. 2006, 51:299-309.
Thierstein H., Young J.R. Coccolithophores; From Molecular Processes to Global Impact 2004, Springer.
Zeebe R., Wolf-Gladrow D. CO2 in Seawater: Equilibrium, Kinetics 2001, Isotopes, Amsterdam.
Zondervan I., Rost B., Riebesell U. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. Journal of Experimental Marine Biology and Ecology 2002, 272:55-70.
Zondervan I., Zeebe R.E., Rost B., Riebesell U. Decreasing marine biogenic calcification: a negative feedback on rising atmospheric pCO(2). Global Biogeochem. Cycles 2001, 15:507-516.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.