weathering; future projections; vegetation; climate; CO2 consumption; loess
Abstract :
[en] Quantifying how C fluxes will change in the future
is a complex task for models because of the coupling between
climate, hydrology, and biogeochemical reactions. Here we
investigate how pedogenesis of the Peoria loess, which has
been weathering for the last 13 kyr, will respond over the next
100 yr of climate change. Using a cascade of numerical models
for climate (ARPEGE), vegetation (CARAIB) and weathering
(WITCH), we explore the effect of an increase in CO2
of 315 ppmv (1950) to 700 ppmv (2100 projection). The increasing
CO2 results in an increase in temperature along the
entire transect. In contrast, drainage increases slightly for a
focus pedon in the south but decreases strongly in the north.
These two variables largely determine the behavior of weathering.
In addition, although CO2 production rate increases in
the soils in response to global warming, the rate of diffusion
back to the atmosphere also increases, maintaining a roughly
constant or even decreasing CO2 concentration in the soil gas
phase. Our simulations predict that temperature increasing in
the next 100 yr causes the weathering rates of the silicates to
increase into the future. In contrast, the weathering rate of
dolomite – which consumes most of the CO2 – decreases in
both end members (south and north) of the transect due to its
retrograde solubility. We thus infer slower rates of advance
of the dolomite reaction front into the subsurface, and faster
rates of advance of the silicate reaction front. However, additional
simulations for 9 pedons located along the north–south
transect show that the dolomite weathering advance rate will
increase in the central part of the Mississippi Valley, owing
to a maximum in the response of vertical drainage to the ongoing
climate change. The carbonate reaction front can be likened to a terrestrial
lysocline because it represents a depth interval over which
carbonate dissolution rates increase drastically. However, in
contrast to the lower pH and shallower lysocline expected in
the oceans with increasing atmospheric CO2, we predict a
deeper lysocline in future soils. Furthermore, in the central
Mississippi Valley, soil lysocline deepening accelerates but
in the south and north the deepening rate slows. This result
illustrates the complex behavior of carbonate weathering facing
short term global climate change. Predicting the global
response of terrestrial weathering to increased atmospheric
CO2 and temperature in the future will mostly depend upon
our ability to make precise assessments of which areas of the
globe increase or decrease in precipitation and soil drainage.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Goddéris, Y.; Centre National de la Recherche Scientifique - CNRS > Géosciences Environnement Toulouse
Brantley, S. L.
François, Louis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Schott, J.
Pollard, D.
Déqué, M.
Dury, Marie ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Language :
English
Title :
Rates of consumption of atmospheric CO2 through the weathering of loess during the next 100 yr of climate change
Publication date :
January 2013
Journal title :
Biogeosciences
ISSN :
1726-4170
eISSN :
1726-4189
Publisher :
European Geosciences Union, Katlenburg-Lindau, Germany
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Amiotte-Suchet, P., Probst, J.-L, and Ludwig, W.: Worlwide distribution of continental rock lithology: implications for the atmospheric/ soil CO 2 uptake by continental weathering and alkalinity river transport to the oceans, Global Biogeochem. Cy., 17, 1038, doi:10.1029/2002GB001891, 2003.
Anderson, S. P., Drever, J. I., and Humphrey, N. F.: Chemical weathering in glacial environments, Geology, 25, 399-402, 1997.
Archer, D.: Fate of fossil fuel CO2 in geologic time, J. Geophys. Res., 110, C09S05, doi:10.1029/2004JC002625, 2005. (Pubitemid 41594909)
Archer, D., Kheshgi, H., and Maier-Reimer, E.: Multiple timescales for neutralization of fossil fuel CO2, Geophys. Res. Lett., 24, 405-408, 1997. (Pubitemid 127553176)
Beaulieu, E., Godd'eris, Y., Labat, D., Roelandt, C., Calmels, D., and Gaillardet, J.: Modeling of water-rock interaction in the Mackenzie basin: competition between sulfuric and carbonic acids, Chem. Geol., 289, 114-123, 2011.
Beaulieu, E., Godd'eris, Y., Donnadieu, Y., Labat, D., and Roelandt C.: High sensitivity of the continental-weathering carbon dioxide sink to future climate change, Nature Climate Change, 2, 346- 349, 2012.
Bettis, E. A., Muhs, D. R., Roberts, H. M., and Wintle, A. G.: Last glacial loess in the conterminous USA, Quaternary Sci. Revi., 22, 1907-1946, 2003. (Pubitemid 37207546)
Boudreau, B. P., Middelburg, J. J., Hofmann, A. F., and Meysman, F. J. R.: Ongoing transients in carbonate compensation, Glob. Biogeochem. Cy., 24, GB4010, doi:10.1029/2009GB003654, 2010.
Brantley, S. L. and White, A. F.: Approaches to modeling weathered regolith, in: Thermodynamics and Kinetics of Water-Rock Interaction, edited by: Oelkers E. H. and Schott, J., Rev. Min. Geochem., 70, 435-484, 2009
Dessert, C., Dupr'e, B., Gaillardet, J., François, L. M.,and Allègre, C. J.: Basalt weathering laws and the impact of basalt weathering on the global carbon cycle, Chem. Geol., 202, 257-273, 2003. (Pubitemid 38047358)
Dury, M., Hambuckers, A., Warnant, P., Henrot, A., Favre, E., Ouberdous, M., and François L.: Responses of European forest ecosystems to 21st century climate: assessing changes in interannual variability and fire intensity, iForest, 4, 82-99, doi:10.3832/ifor0572-004, 2011.
Eyring, H.: The activated complex in chemical reactions, J. Chem. Phys., 3, 107-115, 1935.
Fox-Rabinovitz, M., Ĉot'e, J., Dugas, B., D'equ'e, M., and McGregor, J. I.: Variable resolution general circulation models: stretchedgrid model intercomparison project (SGMIP), J. Geophys. Res., 111, D16104, doi:10.1029/2005JD006520, 2006. (Pubitemid 46290720)
François, L. M., Utescher, T., Favre, E., Henrot, A.-J., Warnant, P., Micheels, A., Erdei, B., Suc, J. P., Cheddadi, R., and Mosbrugger, V.: Modelling Late Miocene vegetation in Europe: Results of the CARAIB model and comparison with palaeovegetation data, Paleogeogr. Paleoclim. Paleoecol., 304, 359-378, 2011.
Gaillardet, J., Dupr'e, B., Louvat, P., and Allègre, C. J.: Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers, Chem. Geol., 159, 3-30, 1999. (Pubitemid 29499567)
Gibelin, A. L. and D'equ'e, M.: Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model, Clim. Dynam., 20, 327-339, 2003.
Gislason, S. R., Oelkers, E. H., Eiriksdottir, E. S., Kardjilov, M. I., Gisladottir, G., Sigfusson, B., Snorrason, A., Elefsen, S., Hardardottir, J., Torssander, P., and Oskarsson, N.: Direct evidence of the feedback between climate and weathering, Earth Planet. Sci. Lett., 277, 213-222, 2008.
Godd'eris, Y., François, L. M., Probst, A., Schott, J., Moncoulon, D., Labat, D., and Viville, D.: Modelling weathering processes at the catchment scale: the WITCH numerical model, Geochim. Cosmochim. Ac., 70, 1128-1147, 2006. (Pubitemid 43257636)
Godd'eris, Y., Roelandt, C., Schott, J., Pierret, M.-C., François, and L. M.: Towards an integrated model of weathering, climate, and biospheric processes, in: Thermodynamics and Kinetics of Water-Rock Interaction, edited by: Oelkers E.H. and Schott J., Rev. Mineral. Geochem., 70, 411-434, 2009.
Godd'eris, Y., Williams, J. Z., Schott, J., Pollard, D., and Brantley, S. L.: Time evolution of the mineralogical composition of the Mississippi Valley loess over the last 10 kyr: climate and geochemical modeling, Geochim. Cosmochim. Ac., 74, 6357-6374, 2010.
Haase, D., Finke, J., Haase, G., Ruske, R., Pecsi, M., Richter, H., Altermann, M., and Jäger, K. D.: Loess in Europe - its spatial distribution based on a European Loess Map, scale 1:2,500,000, Quaternary Sci. Rev., 26, 1301-1312, 2007. (Pubitemid 46880008)
Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S., and Köhler, P.: Global CO2-consumption by chemical weathering: what is the contribution of highly active regions?, Global Planet. Change, 69, 185-194, 2009.
Le Hir, G., Donnadieu, Y., Godd'eris, Y., Meyer-Berthaud, B., Ramstein, G., and Blakey, R. C.: The climate change caused by the land plant invasion in the Devonian, Earth Planet. Sci. Lett., 310, 203-212, 2011.
Moosdorf, N., Hartmann, J., Lauerwald, R., Hagedorn, B., and Kempe, S.: Atmospheric CO2 consumption by chemical weathering in North America, Geochim. Cosmochim. Ac., 75, 7829- 7854, 2011.
Muhs, D. R., Bettis, E. A., Been, J., and McGeehin J. P. : Impact of climate and parent material on chemical weathering in loessderived soils of the Mississippi River Valley, Soil Sci. Soc. Am. J., 65, 1761-1777, 2001. (Pubitemid 34003981)
Muhs, D. R., Bettis, E. A., Aleinikoff, J. N., McGeehin, J. P., Beann, J., Skipp, G., Marshall, B. D., Roberts, H. M., Johnson, W. C., and Benton, R.: Origin and paleoclimatic significance of late Quaternary loess in Nebraska: evidence from stratigraphy, chronology, sedimentology, and geochemistry, Geol. Soc. Am. Bull., 120, 1378-1407, 2008.
Nemry, B., François, L. M., Warnant, P., Robinet, F., and G'erard, J.-C.: The seasonality of the CO2 exchange between the atmosphere and the land biosphere: a study with a global mechanistic vegetation model, J. Geophys. Res., 101, 7111-7125, 1996.
Nemry, B., François, L. M., G'erard J.-C., Bondeau A., and Heimann, M.: Comparing global models of terrestrial net primary productivity (NPP): analysis of the seasonal atmospheric CO2 signal., Glob. Change Biol., 5, Supplement 1, 65-76, 2003. (Pubitemid 29370533)
Oliva, P., Dupr'e, B., and Viers, J.: Chemical weathering in granitic environments, Chem. Geol., 202, 225-256, 2003.
Otto, D., Rasse, D., Kaplan, J., Warnant, P., and François, L. M.: Biospheric carbon stocks reconstructed at the Last Glacial Maximum: comparison between general circulation models using prescribed and computed sea surface temperatures, Global Planet. Change, 33, 117-138, 2002. (Pubitemid 34667588)
Pokrovsky, O. S. and Schott, J.: Processes at the magnesium-bearing carbonates/solution interface. II. Kinetics and mechanism of magnesite dissolution, Geochim. Cosmochim. Ac., 63, 881-897, 1999.
Pokrovsky, O. S. and Schott, J.: Kinetics and mechanism of dolomite dissolution in neutral to alkaline solutions revisited, Am. J. Sci., 301, 597-626, 2001.
Pokrovsky, O. S., Schott, J., and Thomas, F.: Dolomite surface speciation and reactivity in aquatic systems, Geochim. Cosmochim. Ac., 63, 3133-3143, 1999. (Pubitemid 30106845)
Pye, K. and Johnson, R.: Stratigraphy, geochemistry, and thermoluminescences ages of lower Mississippi Valley loess, Earth Surf. Proc. Land., 13, 103-124, 1988.
Raymond, P. A., Oh, N.-H., Turner, R. E., and Broussard, W.: Anthropogenically enhanced fluxes of water and carbon from the Mississippi River, Nature, 451, 449-452, 2008. (Pubitemid 351158889)
Roelandt, C., Godd'eris, Y., Bonnet, M.-P., and Sondag, F.: Coupled modeling of biospheric and chemical processes at the continental scale, Global Biogeochem. Cy., 24, GB2004, doi:10.1029/2008GB003420, 2010.
Rousseau, D.-D.: Loess biostratigraphy: new advances and approaches in mollusk studies, Earth Sci. Rev., 54, 157-171, 2001. (Pubitemid 32793094)
Ruhe, R. V.: Loess-derived soils, Mississippi Valley region: II, Soilclimate system, Soil Sci. Soc. Am. J., 48, 864-867, 1984. (Pubitemid 16259990)
Salas y Ḿelia, D., Chauvin, F., D́eqúe, M., Douville, H., Gúeŕemy, J.-F., Marquet, P., Planton, S., Royer, J.-F., and Tyteca, S.: Description and validation of CNRM-CM3 global coupled climate model, Note de centre GMCEC, CNRM, 103, 2005.
S'anchez-Rom'an, M., Romanek, C. S., Fern'andez-Remolar, D. C., S'anchez-Navas, A., McKenzie, J. A., Amils Pibernat, R., and Vasconcelos, C.: Aerobic biomineralization of Mg-rich carbonates: implication for natural environments, Chem. Geol., 281, 143-150, 2011.
Schott, J., Pokrovsky, O. S., and Oelkers, E. H.: The link between mineral dissolution/precipitation kinetics and solution chemistry, in: Thermodynamics and kinetics of water-rock interaction, edited by: Oelkers, E. H. and Schott, J., Rev. Mineral Geochem. 70, 207-258, 2009.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L.: Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
Taylor, L. L., Banwart, S. A., Valdes, P. J., Leake, J. R., and Beerling, D. J.: Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach, Philos. T. Roy. Soc. B, 367, 565-582, 2012.
Van Bavel, C. H. M.: A soil aeration theory based on diffusion, Soil Sci., 72, 33-46, 1951.
Vasconcelos, C., McKenzie, J. A., Bernasconi, S., Grujic, D., and Tien, A. J.: Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures, Nature, 377, 220- 222, 1995. (Pubitemid 26438779)
Violette, A., Godd'eris, Y., Mar'echal, J.-C., Riotte, J., Oliva, P., Mohan Kumar, M. S., Sekhar, M., and Braun, J.-J.: Modelling the chemical weathering fluxes at the watershed scale in the Tropics (Mule Hole, South India): relative contribution of the smectite/ kaolinite assemblage versus primary minerals, Chem. Geol., 277, 42-60, 2010.
Warnant, P., François, L. M., Strivay, D., and G'erard, J.-C.: CARAIB: a global model of terrestrial biological productivity, Global Biogeochem. Cy., 8, 255-270, 1994.
White, A. F. and Blum, A. E.: Effects of climate on chemical weathering in watersheds, Geochim. Cosmochim. Ac., 599, 1729- 1747, 1995.
White, A. F., Bullen, T. D., Schultz, M. S., Blum, A. E., Huntington, T. G., and Peeters N. E.: Differential rates of feldspar weathering in granitic regoliths, Geochim. Cosmochim. Ac., 65, 847-869, 2001. (Pubitemid 32296341)
Williams, J. Z.: The effect of temperature and precipitation on sodium depletion fronts in soils developed on Peoria loess, Pennsylvania State University, University Park, 113 pp., 2008.
Williams, J. Z., Bandstra, J. Z., Pollard, D., and Brantley S. L.: The temperature dependence of feldspar dissolution determined using a coupled weathering-climate model for Holocene-aged loess soils, Geoderma, 156, 11-19, 2010.
West, A. J., Galy, A., and Bickle, M.: Tectonic and climatic controls on silicate weathering, Earth Planet. Sci. Lett., 235, 211-228, 2005. (Pubitemid 40841300)
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.