Palaeoredox conditions; Iron speciation; Early eukaryotes; Palaeoecology
Abstract :
[en] Reconstructing the spatial distribution of early eukaryotes in palaeoenvironments through Proterozoic sedimentary basins provides important information about their palaeoecology and taphonomic conditions. Here, we combine the geological context and a reconstruction of palaeoenvironmental redox conditions (using iron speciation) with quantitative analysis of microfossil assemblages (eukaryotes andincertae sedis), to provide the first palaeoecological model for the Atar/El Mreïti Group of the Taoudeni Basin. Our model suggests that in the late Mesoproterozoic–early Neoproterozoic, the availability of both molecular oxygen and nutrients controlled eukaryotic diversity, higher in oxic shallow marginal marine environments, while coccoidal colonies and benthic microbial mats dominated respectively in anoxic iron-rich and euxinic waters during marine highstands or away from shore where eukaryotes are lower or absent.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Beghin, Jérémie ; Université de Liège > Département de géologie > Paléobiogéologie - Paléobotanique - Paléopalynologie (PPP)
Guilbaud, Romain
Poulton, Simon W.
Gueneli, Nur
Brocks, Jochen
Storme, Jean-Yves
Blanpied, Christian
Javaux, Emmanuelle ; Université de Liège > Département de géologie > Paléobiogéologie - Paléobotanique - Paléopalynologie (PPP)
Language :
English
Title :
A palaeoecological model for the late Mesoproterozoic–early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Anbar, A.D., Knoll, A.H., Proterozoic ocean chemistry and evolution: a bioinorganic bridge?. Science 297 (2002), 1137–1142.
Bartley, J.K., Kah, L.C., Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology 32 (2004), 129–132.
Beghin, J., Storme, J.-Y., Blanpied, C., Gueneli, N., Brocks, J.J., Poulton, S.W., Javaux, E.J., Microfossils from the late Mesoproterozoic – early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa. Precambrian Res. 291 (2017), 63–82.
BEICIP, Nouvelles observations géologiques dans le bassin de Taoudeni. Rapport de la mission de terrain. 1981, DMG – DNGM, Paris.
Benan, C.A.A., Deynoux, M., Facies analysis and sequence stratigraphy of Neoproterozoic Platform deposits in Adrar of Mauritania, Taoudeni Basin, West Africa. Geol. Rundsch. 87 (1998), 283–302.
Bertrand-Sarfati, J., Moussine-Pouchkine, A., Is cratonic sedimentation consistent with available models? An example from the Upper Proterozoic of the West African craton. Sediment. Geol. 58 (1988), 255–276.
Bertrand-Sarfati, J., Moussine-Pouchkine, A., Formation et comblement d‘une dépression intraplateforme engendrée par la croissance d'un biostrome stromatolitique, Protérozoïque supérieur, Sahara algérien. C. R. Acad. Sci. (Paris) 315 (1992), 837–843.
Blumenberg, M., Thiel, V., Riegel, W., Kah, L.C., Reitner, J., Biomarkers of black shales formed by microbial mats, Late Mesoproterozoic (1.1 Ga) Taoudeni Basin, Mauritania. Precambrian Res. 196–197 (2012), 113–127.
Brasier, M.D., Lindsay, J.F., A billion years of environmental stability and the emergence of eukaryotes: new data from northern Australia. Geology 26 (1998), 555–558.
Bronner, G., Roussel, J., Trompette, R., Clauer, N., Genesis and geodynamic evolution of the Taoudeni Cratonic Basin (Upper Precambrian and Paleozoic), Western Africa, dynamics of plate interiors. Am. Geophys. Union, 1980, 81–90.
Buick, R., Des Marais, D.J., Knoll, A.H., Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall group, northwestern Australia. Chem. Geol. 123 (1995), 153–171.
Buick, R., Knoll, A.H., Acritarchs and microfossils from the Mesoproterozoic Bangemall Group, northwestern Australia. J. Paleontol. 73 (1999), 744–764.
Butterfield, N.J., Macroevolution and macroecology through deep time. Palaeontology 50 (2007), 41–55.
Butterfield, N.J., Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7 (2009), 1–7.
Butterfield, N.J., Early evolution of the Eukaryota. Palaeontology 58 (2015), 5–17.
Butterfield, N.J., Chandler, F.W., Palaeoenvironmental distribution of Proterozoic microfossils, with an example from the Agu Bay Formation, Baffin Island. Palaeontology 35 (1992), 943–957.
Butterfield, N.J., Knoll, A.H., Swett, K., Paleobiology of the Neoproterozoic Svanbergfjellet formation, Spitsbergen. Lethaia, 27, 1994, 76.
Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M., Berner, R.A., The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54 (1986), 149–155.
Clarkson, M.O., Poulton, S.W., Guilbaud, R., Wood, R.A., Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments. Chem. Geol. 382 (2014), 111–122.
Clauer, N., Chimie isotopique du strontium des milieux sédimentaires. Application à la géochronologie de la couverture du craton ouest africain. Mém. Sci. Géol. 45 (1976), 1–256.
Clauer, N., Rb–Sr and K–Ar dating of precambrian clays and glauconies. Precambrian Res. 15 (1981), 331–352.
Clauer, N., Caby, R., Jeannette, D., Trompette, R., Geochronology of sedimentary and metasedimentary precambrian rocks of the West African craton. Precambrian Res. 18 (1982), 53–71.
Clauer, N., Deynoux, M., New information on the probable isotopic age of the late proterozoic glaciation in West Africa. Precambrian Res. 37 (1987), 89–94.
Cohen, P.A., Macdonald, F.A., The proterozoic record of eukaryotes. Paleobiology 41 (2015), 610–632.
Cumming, V.M., Poulton, S.W., Rooney, A.D., Selby, D., Anoxia in the terrestrial environment during the late Mesoproterozoic. Geology 41 (2013), 583–586.
Dupont, C.L., Yang, S., Palenik, B., Bourne, P.E., Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. Proc. Natl. Acad. Sci. U.S.A. 103 (2006), 17822–17827.
Fischer, A.G., Fossils, early life, and atmospheric history. Proc. Natl. Acad. Sci. U.S.A. 53 (1965), 1205–1215.
Gilleaudeau, G.J., Kah, L.C., Carbon isotope records in a Mesoproterozoic epicratonic sea: carbon cycling in a low-oxygen world. Precambrian Res. 228 (2013), 85–101.
Gilleaudeau, G.J., Kah, L.C., Oceanic molybdenum drawdown by epeiric sea expansion in the Mesoproterozoic. Chem. Geol. 356 (2013), 21–37.
Gilleaudeau, G.J., Kah, L.C., Heterogeneous redox conditions and a shallow chemocline in the Mesoproterozoic ocean: evidence from carbon–sulfur–iron relationships. Precambrian Res. 257 (2015), 94–108.
Godfrey, L.V., Poulton, S.W., Bebout, G.E., Fralick, P.W., Stability of the nitrogen cycle during development of sulfidic water in the redox-stratified late Paleoproterozoic Ocean. Geology 41 (2013), 655–658.
Guilbaud, R., Poulton, S.W., Butterfield, N.J., Zhu, M., Shields-Zhou, G.A., A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nat. Geosci. 8 (2015), 466–470.
Hallmann, C., Summons, R.E., Eukaryotes and euxinia before the great oxidation event. LPI Contrib., 1538, 2010, 5543.
Havig, J.R., McCormick, M.L., Hamilton, T.L., Kump, L.R., The behavior of biologically important trace elements across the oxic/euxinic transition of meromictic Fayetteville Green Lake, New York, USA. Geochim. Cosmochim. Acta 165 (2015), 389–406.
Jansonius, J., McGregor, D.C., Palynology: Principles and Applications. 1996, American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.
Javaux, E.J., Early Eukaryotes in Precambrian Oceans, Origins and Evolution of Life. An Astrobiological Perspective. 2011, Cambridge University Press, 414–449.
Javaux, E.J., Knoll, A.H., Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. J. Paleontol., 2016, 1–31.
Javaux, E.J., Knoll, A.H., Walter, M.R., Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412 (2001), 66–69.
Johansson, Å., From Rodinia to Gondwana with the ‘SAMBA’ model—a distant view from Baltica towards Amazonia and beyond. Precambrian Res. 244 (2014), 226–235.
Johnston, D.T., Wolfe-Simon, F., Pearson, A., Knoll, A.H., Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age. Proc. Natl. Acad. Sci. U.S.A. 106 (2009), 16925–16929.
Kah, L.C., Bartley, J.K., Protracted oxygenation of the Proterozoic biosphere. Int. Geol. Rev. 53 (2011), 1424–1442.
Kah, L.C., Bartley, J.K., Stagner, A.F., Reinterpreting a Proterozoic Enigma: Conophyton-Jacutophyton Stromatolites of the Mesoproterozoic Atar Group, Mauritania, Perspectives in Carbonate Geology. 2009, John Wiley & Sons Ltd, 277–295.
Kah, L.C., Bartley, J.K., Teal, D.A., Chemostratigraphy of the Late Mesoproterozoic Atar Group, Taoudeni Basin, Mauritania: muted isotopic variability, facies correlation, and global isotopic trends. Precambrian Res. 200–203 (2012), 82–103.
Kah, L.C., Lyons, T.W., Frank, T.D., Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431 (2004), 834–838.
Kah, L.C., Sherman, A.G., Narbonne, G.M., Knoll, A.H., Kaufman, A.J., δ13C stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: implications for regional lithostratigraphic correlations. Can. J. Earth Sci. 36 (1999), 313–332.
Karlstrom, K.E., Åhäll, K.-I., Harlan, S.S., Williams, M.L., McLelland, J., Geissman, J.W., Long-lived (1.8–1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. Precambrian Res. 111 (2001), 5–30.
Knoll, A.H., Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harbor Perspect. Biol., 6, 2014.
Knoll, A.H., Javaux, E.J., Hewitt, D., Cohen, P., Eukaryotic organisms in Proterozoic oceans. Philos. Trans. R. Soc. B: Biol. Sci. 361 (2006), 1023–1038.
Lahondère, D., Thieblemont, D., Goujou, J.-C., Roger, J., Moussine-Pouchkine, A., LeMetour, J., Cocherie, A., Guerrot, C., Notice explicative des cartes géologiques et gîtologiques à 1/200 000 et 1/500 000 du Nord de la Mauritanie, Vol. 1, 2003, DMG, Ministère des Mines et de l'Industrie, Nouakchott.
Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., Waele, B.D., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., Vernikovsky, V., Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res. 160 (2008), 179–210.
Lyons, Timothy W., Reinhard, Christopher T., Planavsky, Noah J., Evolution: a fixed-nitrogen fix in the early ocean?. Curr. Biol. 24 (2014), R276–R278.
Moore, P.D., Webb, J.A., Collinson, M.E., An Illustrated Guide to Pollen Analysis. second ed., 1991, Blackwell Scientific, Oxford.
Müller, M., Mentel, M., van Hellemond, J.J., Henze, K., Woehle, C., Gould, S.B., Yu, R.-Y., van der Giezen, M., Tielens, A.G.M., Martin, W.F., Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76 (2012), 444–495.
Porter, S.M., Tiny vampires in ancient seas: evidence for predation via perforation in fossils from the 780–740 million-year-old Chuar Group, Grand Canyon, USA. Proc. R. Soc. Lond. B: Biol. Sci., 283, 2016.
Poulton, S.W., Canfield, D.E., Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214 (2005), 209–221.
Poulton, S.W., Canfield, D.E., Ferruginous conditions: a dominant feature of the ocean through earth's history. Elements 7 (2011), 107–112.
Poulton, S.W., Fralick, P.W., Canfield, D.E., The transition to a sulphidic ocean ∼1.84 billion years ago. Nature 431 (2004), 173–177.
Poulton, S.W., Raiswell, R., The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Am. J. Sci. 302 (2002), 774–805.
Rahmani, A., Goucem, A., Boukhallat, S., Saadallah, N., Infracambrian petroleum play elements of the NE Taoudenni Basin (Algeria). Geol. Soc. Lond. Spec. Publ. 326 (2009), 221–229.
Raiswell, R., Canfield, D.E., Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298 (1998), 219–245.
Raiswell, R., Newton, R., Wignall, P.B., An indicator of water-column anoxia: resolution of biofacies variations in the Kimmeridge Clay (Upper Jurassic, U.K.). J. Sediment. Res. 71 (2001), 286–294.
Riding, R., Fralick, P., Liang, L., Identification of an Archean marine oxygen oasis. Precambrian Res. 251 (2014), 232–237.
Riedman, L.A., Porter, S.M., Halverson, G.P., Hurtgen, M.T., Junium, C.K., Organic-walled microfossil assemblages from glacial and interglacial Neoproterozoic units of Australia and Svalbard. Geology 42 (2014), 1011–1014.
Roberts, N.M.W., The boring billion? – lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geosci. Front. 4 (2013), 681–691.
Rooney, A.D., Selby, D., Houzay, J.-P., Renne, P.R., Re–Os geochronology of a Mesoproterozoic sedimentary succession, Taoudeni basin, Mauritania: implications for basin-wide correlations and Re–Os organic-rich sediments systematics. Earth Planet. Sci. Lett. 289 (2010), 486–496.
Schofield, D.I., Gillespie, M.R., A tectonic interpretation of “Eburnean terrane” outliers in the Reguibat Shield, Mauritania. J. Afr. Earth Sc. 49 (2007), 179–186.
Schofield, D.I., Horstwood, M.S.A., Pitfield, P.E.J., Crowley, Q.G., Wilkinson, A.F., Sidaty, H.C.O., Timing and kinematics of Eburnean tectonics in the central Reguibat Shield, Mauritania. J. Geol. Soc. 163 (2006), 549–560.
Scott, C., Planavsky, N.J., Dupont, C.L., Kendall, B., Gill, B.C., Robbins, L.J., Husband, K.F., Arnold, G.L., Wing, B.A., Poulton, S.W., Bekker, A., Anbar, A.D., Konhauser, K.O., Lyons, T.W., Bioavailability of zinc in marine systems through time. Nat. Geosci. 6 (2013), 125–128.
Stairs, C.W., Leger, M.M., Roger, A.J., Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos. Trans. R. Soc. B: Biol. Sci., 370, 2015.
Trompette, R., Le Précambrien supérieur et le Paléozoïque inférieur de l'Adrar de Mauritanie (bordure occidentale du bassin de Taoudeni, Afrique de l'Ouest). Un exemple de sédimentation de craton. Étude stratigraphique et sédimentologique. 1973, Travaux des Laboratoires des Sciences de la Terre St-Jérome, Marseille B-7, 702.
Trompette, R., Carozzi, A.V., Geology of Western Gondwana (2000–500 Ma). 1994, Balkema, A.A., Rotterdam.
Verati, C., Bertrand, H., Féraud, G., The farthest record of the Central Atlantic Magmatic Province into West Africa craton: precise 40Ar/39Ar dating and geochemistry of Taoudenni basin intrusives (northern Mali). Earth Planet. Sci. Lett. 235 (2005), 391–407.
Villeneuve, M., Cornée, J.J., Structure, evolution and palaeogeography of the West African craton and bordering belts during the Neoproterozoic. Precambrian Res. 69 (1994), 307–326.
Zerkle, A.L., House, C.H., Cox, R.P., Canfield, D.E., Metal limitation of cyanobacterial N2 fixation and implications for the precambrian nitrogen cycle. Geobiology 4 (2006), 285–297.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.