[en] Jupiter's ultraviolet (UV) aurorae, the most powerful and intense in the solar system, are caused by energetic electrons precipitating from the magnetosphere into the atmosphere where they excite the molecular hydrogen. Previous studies focused on case analyses and/or greater than 30-keV energy electrons. Here for the first time we provide a comprehensive evaluation of Jovian auroral electron characteristics over the entire relevant range of energies ( 100 eV to 1 MeV). The focus is on the first eight perijoves providing a coarse but complete System III view of the northern and southern auroral regions with corresponding UV observations. The latest magnetic field model JRM09 with a current sheet model is used to map Juno's magnetic foot point onto the UV images and relate the electron measurements to the UV features. We find a recurring pattern where the 3- to 30-keV electron energy flux peaks in a region just equatorward of the main emission. The region corresponds to a minimum of the electron characteristic energy (\textless10 keV). Its polarward edge corresponds to the equatorward edge of the main oval, which is mapped at M shells of 51. A refined current sheet model will likely bring this boundary closer to the expected 20–30 RJ. Outside that region, the \textgreater100-keV electrons contribute to most (\textgreater 70–80\%) of the total downward energy flux and the characteristic energy is usually around 100 keV or higher. We examine the UV brightness per incident energy flux as a function of characteristic energy and compare it to expectations from a model.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Allegrini, Frédéric A.
Mauk, Barry H.
Clark, George B.
Gladstone, G. Randall
Hue, Vincent
Kurth, W. S.
Bagenal, Frances
Bolton, Scott J.
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adriani, A., Filacchione, G., di Iorio, T., Turrini, D., Noschese, R., Cicchetti, A., Grassi, D., Mura, A., Sindoni, G., Zambelli, M., Piccioni, G., Capria, M. T., Tosi, F., Orosei, R., Dinelli, B. M., Moriconi, M. L., Roncon, E., Lunine, J. I., Becker, H. N., Bini, A., Barbis, A., Calamai, L., Pasqui, C., Nencioni, S., Rossi, M., Lastri, M., Formaro, R., & Olivieri, A. (2017). JIRAM, the Jovian infrared auroral mapper. Space Science Reviews, 213(1-4), 393–446. https://doi.org/10.1007/s11214-014-0094-y
Allegrini, F., Bagenal, F., Bolton, S., Connerney, J., Clark, G., Ebert, R. W., Kim, T. K., Kurth, W. S., Levin, S., Louarn, P., Mauk, B., McComas, D. J., Pollock, C., Ranquist, D., Reno, M., Szalay, J. R., Thomsen, M. F., Valek, P., Weidner, S., Wilson, R. J., & Zink, J. L. (2017). Electron beams and loss cones in the auroral regions of Jupiter. Geophysical Research Letters, 44, 7131–7139. https://doi.org/10.1002/2017GL073180
Allegrini, F., Desai, M. I., Livi, R., Livi, S., McComas, D. J., & Randol, B. (2009). The entrance system laboratory prototype for an Advanced Mass and Ionic Charge Composition Experiment (AMICCE). The Review of Scientific Instruments, 80(10), 104,502. https://doi.org/10.1063/1.3247906
Bader, A., Cowley, S. W. H., Badman, S. V., Ray, L. C., Kinrade, J., Palmaerts, B., & Pryor, W. R. (2020). The morphology of Saturn's aurorae observed during the Cassini Grand Finale. Geophysical Research Letters, 47. https://doi.org/10.1029/2019GL085800
Bagenal, F., Adriani, A., Allegrini, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Connerney, J. E. P., Cowley, S. W. H., Ebert, R. W., Gladstone, G. R., Hansen, C. J., Kurth, W. S., Levin, S. M., Mauk, B. H., McComas, D. J., Paranicas, C. P., Santos-Costa, D., Thorne, R. M., Valek, P., Waite, J. H., & Zarka, P. (2017). Magnetospheric science objectives of the Juno mission. Space Science Reviews, 213(1-4), 219–287. https://doi.org/10.1007/s11214-014-0036-8
Bagenal, F., Wilson, R. J., Siler, S., Paterson, W. R., & Kurth, W. S. (2016). Survey of Galileo plasma observations in Jupiter's plasma sheet. Journal of Geophysical Research: Planets, 121, 871–894. https://doi.org/10.1002/2016JE005009
Barnhart, B. L., Kurth, W. S., Groene, J. B., Faden, J. B., Santolik, O., & Gurnett, D. A. (2009). Electron densities in Jupiter's outer magnetosphere determined from Voyager 1 and 2 plasma wave spectra. Journal of Geophysical Research, 114, A05218. https://doi.org/10.1029/2009JA014069
Bevington, P. R., & Robinson, D. K. (2003). Data reduction and error analysis for the physical sciences, (3rd ed.). McGraw-Hill, ISBN 0–07–247227-8: Boston, MA.
Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., Bagenal, F., Gautier, D., Ingersoll, A. P., Orton, G. S., Guillot, T., Hubbard, W., Bloxham, J., Coradini, A., Stephens, S. K., Mokashi, P., Thorne, R., & Thorpe, R. (2017). Space Science Reviews, 213(1-4), 5–37. https://doi.org/10.1007/s11214-017-0429-6
Bonfond, B., Grodent, D., Gérard, J.-C., Stallard, T., Clarke, J. T., Yoneda, M., Radioti, A., & Gustin, J. (2012). Auroral evidence of Io's control over the magnetosphere of Jupiter. Geophysical Research Letters, 39, L01105. https://doi.org/10.1029/2011GL050253
Bonfond, B., Gustin, J., Gérard, J. -C., Grodent, D., Radioti, A., Palmaerts, B., Badman, S. V., Khurana, K. K., & Tao, C. (2015). The far-ultraviolet main auroral emission at Jupiter—Part 1: Dawn-dusk brightness asymmetries. Annales Geophysicae, 33, 1203. https://doi.org/10.5194/angeo-33-1203-2015
Bordoni, F. (1971). Channel electron multiplier efficiency for 10-1000 eV electrons. Nuclear Instruments and Methods, 97(2), 405–408. https://doi.org/10.1016/0029-554X(71)90300-4
Carlson, C. W., Pfaff, R. F., & Watzin, J. G. (1998). The Fast Auroral SnapshoT (FAST) mission. Geophysical Research Letters, 25, 2013–2016. https://doi.org/10.1029/98GL01592
Clark, G., Mauk, B. H., Haggerty, D., Paranicas, C., Kollmann, P., Rymer, A., Bunce, E. J., Cowley, S. W. H., Mitchell, D. G., Provan, G., Ebert, R. W., Allegrini, F., Bagenal, F., Bolton, S., Connerney, J., Kotsiaros, S., Kurth, W. S., Levin, S., McComas, D. J., Saur, J., & Valek, P. (2017). Energetic particle signatures of magnetic field-aligned potentials over Jupiter's polar regions. Geophysical Research Letters, 44, 8703–8711. https://doi.org/10.1002/2017GL074366
Clark, G., Tao, C., Mauk, B. H., Nichols, J., Saur, J., Bunce, E. J., Allegrini, F., Gladstone, R., Bagenal, F., Bolton, S., Bonfond, B., Connerney, J., Ebert, R. W., Gershman, D. J., Haggerty, D., Kimura, T., Kollmann, P., Kotsiaros, S., Kurth, W. S., Levin, S., McComas, D. J., Murakami, G., Paranicas, C., Rymer, A., & Valek, P. (2018). Precipitating electron energy flux and characteristic energies in Jupiter's main auroral region as measured by Juno/JEDI. Journal of Geophysical Research: Space Physics, 123, 7554–7567. https://doi.org/10.1029/2018JA025639
Clarke, J., Grodent, D., Cowley, S., Bunce, E., Zarka, P., Connerney, J., & Satoh, T. (2004). In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter's aurora, in Jupiter: Planet, satellites, magnetosphere. Cambridge: Cambridge University Press.
Clarke, J. T., Ballester, G., Trauger, J., Ajello, J., Pryor, W., Tobiska, K., Connerney, J. E. P., Gladstone, G. R., Waite, J. H. Jr., Ben Jaffel, L., & Gérard, J. C. (1998). Hubble Space Telescope imaging of Jupiter's UV aurora during the Galileo orbiter mission. Journal of Geophysical Research, 103(E9), 20217–20236. https://doi.org/10.1029/98JE01130
Connerney, J. E. P., Acuña, M. H., & Ness, N. F. (1981). Jovian current sheet and inner magnetosphere. Journal of Geophysical Research, 86(A10), 8370–8384. https://doi.org/10.1029/JA086iA10p08370
Connerney, J. E. P., Acuna, M. H., Ness, N. F., & Satoh, T. (1998). New models of Jupiter's magnetic field constrained by the Io flux tube footprint. Journal of Geophysical Research, 103, 11,929–11,939. https://doi.org/10.1029/97JA03726
Connerney, J. E. P., Adriani, A., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Cowley, S. W. H., Gerard, J. C., Gladstone, G. R., Grodent, D., Hospodarsky, G., Jorgensen, J. L., Kurth, W. S., Levin, S. M., Mauk, B., McComas, D., Mura, A., Paranicas, C., Smith, E. J., Thorne, R. M., Valek, P., & Waite, J. (2017). Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 356(6340), 826–832. https://doi.org/10.1126/science.aam5928
Connerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen, J. L., Jorgensen, P. S., Lawton, P., Malinnikova, A., Merayo, J. M., Murphy, S., Odom, J., Oliversen, R., Schnurr, R., Sheppard, D., & Smith, E. J. (2017). The Juno magnetic field investigation. Space Science Reviews, 213(1-4), 39–138. https://doi.org/10.1007/s11214-017-0334-z
Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., Merayo, J. M. G., Herceg, M., Bloxham, J., Moore, K. M., Bolton, S. J., & Levin, S. M. (2018). A new model of Jupiter's magnetic field from Juno's first nine orbits. Geophysical Research Letters, 45, 2590–2596. https://doi.org/10.1002/2018GL077312
Cowley, S. W. H., & Bunce, E. J. (2001). Origin of the main auroral oval in Jupiter's coupled magnetosphere-ionosphere system. Planetary and Space Science, 49(10–11), 1067–1088. https://doi.org/10.1016/S0032-0633(00)00167-7
Dahl, D. A. (2000). SIMION for the personal computer in reflection. International Journal of Mass Spectrometry, 200, p3.
Deconihout, B., Vurpillot, F., Bouet, M., & Renaud, L. (2002). Improved ion detection efficiency of microchannel plate detectors. Review of Scientific Instruments, 73(4), 1734–1740. https://doi.org/10.1063/1.1461882
Dumont, M., Grodent, D., Radioti, A., Bonfond, B., & Gérard, J. -C. (2014). Jupiter's equatorward auroral features: Possible signatures of magnetospheric injections. Journal of Geophysical Research: Space Physics, 119, 10,068–10,077. https://doi.org/10.1002/2014JA020527
Dunn, W. R., Branduardi-Raymont, G., Ray, L. C., Jackman, C. M., Kraft, R. P., Elsner, R. F., Rae, I. J., Yao, Z., Vogt, M. F., Jones, G. H., Gladstone, G. R., Orton, G. S., Sinclair, J. A., Ford, P. G., Graham, G. A., Caro-Carretero, R., & Coates, A. J. (2017). The independent pulsations of Jupiter's northern and southern X-ray auroras. Nature Astronomy, 1(11), 758–764. https://doi.org/10.1038/s41550-017-0262-6
Ebert, R. W., Allegrini, F., Bagenal, F., Bolton, S. J., Connerney, J. E. P., Clark, G., Gladstone, G. R., Hue, V., Kurth, W. S., Levin, S., Louarn, P., Mauk, B. H., McComas, D. J., Paranicas, C., Reno, M., Saur, J., Szalay, J. R., Thomsen, M. F., Valek, P., Weidner, S., & Wilson, R. J. (2017). Spatial distribution and properties of 0.1–100 keV electrons in Jupiter's polar auroral region. Geophysical Research Letters, 44, 9199–9207. https://doi.org/10.1002/2017GL075106
Ebert, R. W., Greathouse, T. K., Clark, G., Allegrini, F., Bagenal, F., Bolton, S. J., Connerney, J. E. P., Gladstone, G. R., Imai, M., Hue, V., Kurth, W. S., Levin, S., Louarn, P., Mauk, B. H., McComas, D., Paranicas, C., Szalay, J. R., Thomsen, M. F., Valek, P. W., & Wilson, R. J. (2019). Comparing electron energetics and UV brightness in Jupiter's northern polar region during Juno Perijove 5. Geophysical Research Letters, 46, 19–27. https://doi.org/10.1029/2018GL081129
Elliott, S. S., Gurnett, D. A., Kurth, W. S., Mauk, B. H., Ebert, R. W., Clark, G., Valek, P., Allegrini, F., & Bolton, S. J. (2018). The acceleration of electrons to high energies over the Jovian polar cap via whistler mode wave-particle interactions. Journal of Geophysical Research: Space Physics, 123, 7523–7533. https://doi.org/10.1029/2018JA025797
Funsten, H. O., Harper, R. W., & McComas, D. J. (2005). Absolute detection efficiency of space-based ion mass spectrometers and neutral atom imagers. The Review of Scientific Instruments, 76, 053301. https://doi.org/10.1063/1.1889465
Gérard, J. -C., Bonfond, B., Grodent, D., & Radioti, A. (2016). The color ratio-intensity relation in the Jovian aurora: Hubble observations of auroral components. Planetary and Space Science, 131, 14–23. https://doi.org/10.1016/j.pss.2016.06.004
Gérard, J.-C., Bonfond, B., Grodent, D., Radioti, A., Clarke, J. T., Gladstone, G. R., Waite, J. H., Bisikalo, D., & Shematovich, V. I. (2014). Mapping the electron energy in Jupiter's aurora: Hubble spectral observations. Journal of Geophysical Research: Space Physics, 119, 9072–9088. https://doi.org/10.1002/2014JA020514
Gérard, J.-C., Bonfond, B., Mauk, B. H., Gladstone, G. R., Yao, Z. H., Greathouse, T. K., Hue, V., Grodent, D., Gkouvelis, L., Kammer, J. A., Versteeg, M., Clark, G., Radioti, A., Connerney, J. E. P., Bolton, S. J., & Levin, S. M. (2019). Contemporaneous observations of Jovian energetic auroral electrons and ultraviolet emissions by the Juno spacecraft. Journal of Geophysical Research: Space Physics, 124, 8298–8317. https://doi.org/10.1029/2019JA026862
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., Versteeg, M. H., Persson, K. B., Young, M. K., Dirks, G. J., Sawka, A. O., Tumlinson, J., Sykes, H., Beshears, J., Rhoad, C. L., Cravens, J. P., Winters, G. S., Klar, R. A., Lockhart, W., Piepgrass, B. M., Greathouse, T. K., Trantham, B. J., Wilcox, P. M., Jackson, M. W., Siegmund, O. H. W., Vallerga, J. V., Raffanti, R., Martin, A., Gérard, J. C., Grodent, D. C., Bonfond, B., Marquet, B., & Denis, F. (2017). The ultraviolet spectrograph on NASA's Juno mission. Space Science Reviews, 213(1-4), 447–473. https://doi.org/10.1007/s11214-014-0040-z
Gladstone, G. R., Waite, J. H. Jr., Grodent, D., Lewis, W. S., Crary, F. J., Elsner, R. F., Weisskopf, M. C., Majeed, T., Jahn, J. M., Bhardwaj, A., Clarke, J. T., Young, D. T., Dougherty, M. K., Espinosa, S. A., & Cravens, T. E. (2002). A pulsating auroral X-ray hot spot on Jupiter. Nature, 415(6875), 1000–1003. https://doi.org/10.1038/4151000a
Goruganthu, R. R., & Wilson, W. G. (1984). Relative electron detection efficiency of microchannel plates from 0–3 keV. Review of Scientific Instruments, 55(12), 2030–2033. https://doi.org/10.1063/1.1137709
Gray, R. L., Badman, S. V., Woodfield, E. E., & Tao, C. (2017). Characterization of Jupiter's secondary auroral oval and its response to hot plasma injections. Journal of Geophysical Research: Space Physics, 122, 6415–6429. https://doi.org/10.1002/2017JA024214
Greathouse, T.K., G.R. Gladstone, M.W. Davis, D.C. Slater, M.H. Versteeg, K.B. Persson, B.C. Walther, G.S. Winters, S.C. Persyn, and J.S. Eterno (2013). Performance results from in-flight commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS). Southwest Research Institute. This document is available upon request.
Grodent, D. (2015). A brief review of ultraviolet auroral emissions on giant planets. Space Science Reviews, 187(1–4), 23–50. https://doi.org/10.1007/s11214-014-0052-8
Grodent, D., Bonfond, B., Yao, Z., Gérard, J.-C., Radioti, A., Dumont, M., Palmaerts, B., Adriani, A., Badman, S. V., Bunce, E. J., Clarke, J. T., Connerney, J. E. P., Gladstone, G. R., Greathouse, T., Kimura, T., Kurth, W. S., Mauk, B. H., McComas, D. J., Nichols, J. D., Orton, G. S., Roth, L., Saur, J., & Valek, P. (2018). Jupiter's aurora observed with HST during Juno orbits 3 to 7. Journal of Geophysical Research: SpacePhysics, 123, 3299–3319. https://doi.org/10.1002/2017JA025046
Grodent, D., Clarke, J. T., Kim, J., Waite, J. H. Jr., & Cowley, S. W. H. (2003). Jupiter's main auroral oval observed with HST-STIS. Journal of Geophysical Research, 108(A11), 1389. https://doi.org/10.1029/2003JA009921
Grodent, D., Clarke, J. T., Waite, J. H. Jr., Cowley, S. W. H., Gérard, J. C., & Kim, J. (2003). Jupiter's polar auroral emissions. Journal of Geophysical Research, 108(A10), 1366. https://doi.org/10.1029/2003JA010017
Grodent, D., Waite, J. H. Jr., & Gérard, J. C. (2001). A self-consistent model of the Jovian auroral thermal structure. Journal of Geophysical Research, 106, 12,933–12,952. https://doi.org/10.1029/2000JA900129
Gustin, J., Bonfond, B., Grodent, D., & Gérard, J. C. (2012). Conversion from HST ACS and STIS auroral counts into brightness, precipitated power, and radiated power for H2 giant planets. Journal of Geophysical Research, 117, A07316. https://doi.org/10.1029/2012JA017607
Gustin, J., Cowley, S. W. H., Gérard, J. -C., Gladstone, G. R., Grodent, D., & Clarke, J. T. (2006). Characteristics of Jovian morning bright FUV aurora from Hubble Space Telescope/Space Telescope Imaging Spectrograph imaging and spectral observations. Journal of Geophysical Research, 111, A09220. https://doi.org/10.1029/2006JA011730
Gustin, J., Feldman, P. D., Gérard, J.-C., Grodent, D., Vidal-Madjar, A., Ben Jaffel, L., Desert, J. M., Moos, H. W., Sahnow, D. J., Weaver, H. A., Wolven, B. C., Ajello, J. M., Waite, J. H., Roueff, E., & Abgrall, H. (2004). Jovian auroral spectroscopy with FUSE: Analysis of self-absorption and implications for electron precipitation. Icarus, 171(2), 336–355. https://doi.org/10.1016/j.icarus.2004.06.005
Gustin, J., Grodent, D., Gérard, J. C., & Clarke, J. T. (2002). Spatially resolved far ultraviolet spectroscopy of the Jovian aurora. Icarus, 157(1), 91–103. https://doi.org/10.1006/icar.2001.6784
Gustin, J., Grodent, D., Ray, L. C., Bonfond, B., Bunce, E. J., Nichols, J. D., & Ozak, N. (2016). Characteristics of north Jovian aurora from STIS FUV spectral images. Icarus, 268, 215–241. https://doi.org/10.1016/j.icarus.2015.12.048
Hess, S. L. G., Bonfond, B., Zarka, P., & Grodent, D. (2011). Model of the Jovian magnetic field topology constrained by the Io auroral emissions. Journal of Geophysical Research, 116, A05217. https://doi.org/10.1029/2010JA016262
Hill, T. W. (1979). Inertial limit on corotation. Journal of Geophysical Research, 84(A11), 6554–6558. https://doi.org/10.1029/JA084iA11p06554
Hill, T. W. (2001). The Jovian auroral oval. Journal of Geophysical Research, 106(A5), 8101–8108. https://doi.org/10.1029/2000JA000302
Huang, T. W., & Hill, T. W. (1989). Corotation lag of the Jovian atmosphere, ionosphere, and magnetosphere. Journal of Geophysical Research, 94(A4), 3761–3765. https://doi.org/10.1029/JA094iA04p03761
Kimura, T., Badman, S. V., Tao, C., Yoshioka, K., Murakami, G., Yamazaki, A., Tsuchiya, F., Bonfond, B., Steffl, A. J., Masters, A., Kasahara, S., Hasegawa, H., Yoshikawa, I., Fujimoto, M., & Clarke, J. T. (2015). Transient internally driven aurora at Jupiter discovered by Hisaki and the Hubble Space Telescope. Geophysical Research Letters, 42, 1662–1668. https://doi.org/10.1002/2015GL063272
Kimura, T., Nichols, J. D., Gray, R. L., Tao, C., Murakami, G., Yamazaki, A., Badman, S. V., Tsuchiya, F., Yoshioka, K., Kita, H., Grodent, D., Clark, G., Yoshikawa, I., & Fujimoto, M. (2017). Transient brightening of Jupiter's aurora observed by the Hisaki satellite and Hubble Space Telescope during approach phase of the Juno spacecraft. Geophysical Research Letters, 44, 4523–4531. https://doi.org/10.1002/2017GL072912
Kotsiaros, S., Connerney, J. E. P., Clark, G., Allegrini, F., Gladstone, G. R., Kurth, W. S., Mauk, B. H., Saur, J., Bunce, E. J., Gershman, D. J., Martos, Y. M., Greathouse, T. K., Bolton, S. J., & Levin, S. M. (2019). Birkeland currents in Jupiter's magnetosphere observed by the polar-orbiting Juno spacecraft. Nature Astronomy, 3(10), 904–909. https://doi.org/10.1038/s41550-019-0819-7
Kurth, W. S., Hospodarsky, G. B., Kirchner, D. L., Mokrzycki, B. T., Averkamp, T. F., Robison, W. T., Piker, C. W., Sampl, M., & Zarka, P. (2017). The Juno waves investigation. Space Science Reviews, 213(1-4), 347–392. https://doi.org/10.1007/s11214-017-0396-y
Kurth, W. S., Mauk, B. H., Elliott, S. S., Gurnett, D. A., Hospodarsky, G. B., Santolik, O., Connerney, J. E. P., Valek, P., Allegrini, F., Gladstone, G. R., Bolton, S. J., & Levin, S. M. (2018). Whistler mode waves associated with broadband auroral electron precipitation at Jupiter. Geophysical Research Letters, 45, 9372–9379. https://doi.org/10.1029/2018GL078566
Lane, R. O., & Zaffarano, D. J. (1954). Transmission of 0-40 kev electrons by thin films with application to beta-ray spectroscopy. Physical Review, 94(4), 960–964. https://doi.org/10.1103/PhysRev.94.960
Li, W., Thorne, R. M., Ma, Q., Zhang, X.-J., Gladstone, G. R., Hue, V., Valek, P. W., Allegrini, F., Mauk, B. H., Clark, G., Kurth, W. S., Hospodarsky, G. B., Connerney, J. E. P., & Bolton, S. J. (2017). Understanding the origin of Jovian diffuse auroral precipitation using Juno's first Perijove observations. Geophysical Research Letters, 44, 10,162–10,170. https://doi.org/10.1002/2017GL075545
Lin, Y., & Joy, D. C. (2005). A new examination of secondary electron yield data. Surface and Interface Analysis, 37, 895–900. https://doi.org/10.1002/sia.2107
Louarn, P., Allegrini, F., McComas, D. J., Valek, P. W., Kurth, W. S., André, N., Bagenal, F., Bolton, S., Ebert, R. W., Imai, M., Levin, S., Szalay, J. R., & Wilson, R. J. (2018). Observation of electron conics by Juno: Implications for radio generation and acceleration processes. Geophysical Research Letters, 45, 9408–9416. https://doi.org/10.1029/2018GL078973
Macau, J. P., Jamar, J., & Gardier, S. (1976). Review of the influence of radiations on channeltrons and channel plates. IEEE Transactions on Nuclear Science, 23(6), 2049–2055. https://doi.org/10.1109/TNS.1976.4328623
Mauk, B. H., Haggerty, D. K., Jaskulek, S. E., Schlemm, C. E., Brown, L. E., Cooper, S. A., Gurnee, R. S., Hammock, C. M., Hayes, J. R., Ho, G. C., Hutcheson, J. C., Jacques, A. D., Kerem, S., Kim, C. K., Mitchell, D. G., Nelson, K. S., Paranicas, C. P., Paschalidis, N., Rossano, E., & Stokes, M. R. (2017). The Jupiter Energetic Particle Detector Instrument (JEDI) investigation for the Juno mission. Space Science Reviews, 213(1–4), 289–346. https://doi.org/10.1007/s11214-013-0025-3
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., Bolton, S. J., Levin, S. M., Adriani, A., Allegrini, F., Bagenal, F., Bonfond, B., Connerney, J. E. P., Gladstone, G. R., Kurth, W. S., McComas, D., & Valek, P. (2017). Discrete and broadband electron acceleration in Jupiter's powerful aurora. Nature, 549(7670), 66–69. https://doi.org/10.1038/nature23648
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., Mitchell, D. G., Bolton, S. J., Levin, S. M., Adriani, A., Allegrini, F., Bagenal, F., Connerney, J. E. P., Gladstone, G. R., Kurth, W. S., McComas, D. J., Ranquist, D., Szalay, J. R., & Valek, P. (2017). Juno observations of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams. Geophysical Research Letters, 44, 4410–4418. https://doi.org/10.1002/2016GL072286
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., Peachey, J. M., Bolton, S. J., Levin, S. M., Adriani, A., Allegrini, F., Bagenal, F., Bonfond, B., Connerney, J. E. P., Ebert, R. W., Gladstone, G. R., Kurth, W. S., McComas, D. J., Ranquist, D., & Valek, P. (2018). Diverse electron and ion acceleration characteristics observed over Jupiter's main aurora. Geophysical Research Letters, 45, 1277–1285. https://doi.org/10.1002/2017GL076901
Mauk, B. H., & Saur, J. (2007). Equatorial electron beams and auroral structuring at Jupiter. Journal of Geophysical Research, 112, A10221. https://doi.org/10.1029/2007JA012370
McComas, D. J., Alexander, N., Allegrini, F., Bagenal, F., Beebe, C., Clark, G., Crary, F., Desai, M. I., Santos, A., Demkee, D., Dickinson, J., Everett, D., Finley, T., Gribanova, A., Hill, R., Johnson, J., Kofoed, C., Loeffler, C., Louarn, P., Maple, M., Mills, W., Pollock, C., Reno, M., Rodriguez, B., Rouzaud, J., Santos-Costa, D., Valek, P., Weidner, S., Wilson, P., Wilson, R. J., & White, D. (2017). The Jovian Auroral Distributions Experiment (JADE) on the Juno mission to Jupiter. Space Science Reviews, 213(1–4), 547–643. https://doi.org/10.1007/s11214-013-9990-9
McNutt, R. L., Belcher, J. W., & Bridge, H. S. (1981). Positive ion observations in the middle magnetosphere of Jupiter. Journal of Geophysical Research, 86, 8319–8342. https://doi.org/10.1029/JA086iA10p08319
McNutt, R. L. Jr., Belcher, J. W., Sullivan, J. D., Bagenal, F., & Bridge, H. S. (1979). Departure from rigid co-rotation of plasma in Jupiter's dayside magnetosphere. Nature, 280(5725), 803. https://doi.org/10.1038/280803a0
Nichols, J., & Cowley, S. (2004). Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: Effect of precipitation-induced enhancement of the ionospheric Pedersen conductivity. Annales Geophysicae, 22(5), 1799–1827. https://doi.org/10.5194/angeo-22-1799-2004
Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Clarke, J. T., Connerney, J. E. P., Cowley, S. W. H., Ebert, R. W., Fujimoto, M., Gérard, J. C., Gladstone, G. R., Grodent, D., Kimura, T., Kurth, W. S., Mauk, B. H., Murakami, G., McComas, D. J., Orton, G. S., Radioti, A., Stallard, T. S., Tao, C., Valek, P. W., Wilson, R. J., Yamazaki, A., & Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44, 7643–7652. https://doi.org/10.1002/2017GL073029
Nichols, J. D., Bunce, E. J., Clarke, J. T., Cowley, S. W. H., Gérard, J. -C., Grodent, D., & Pryor, W. R. (2007). Response of Jupiter's UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign. Journal of Geophysical Research, 112, A02203. https://doi.org/10.1029/2006JA012005
Nichols, J. D., Clarke, J. T., Gérard, J. C., Grodent, D., & Hansen, K. C. (2009). Variation of different components of Jupiter's auroral emission. Journal of Geophysical Research, 114, A06210. https://doi.org/10.1029/2009JA014051
Parkinson, C. D., Stewart, A. I. F., Wong, A. S., Yung, Y. L., & Ajello, J. M. (2006). Enhanced transport in the polar mesosphere of Jupiter: Evidence from Cassini UVIS helium 584 Å airglow. Journal of Geophysical Research, 111, E02002. https://doi.org/10.1029/2005JE002539
Radioti, A., Gérard, J.-C., Grodent, D., Bonfond, B., Krupp, N., & Woch, J. (2008). Discontinuity in Jupiter's main auroraloval. Journal of Geophysical Research, 113, A01215. https://doi.org/10.1029/2007JA012610
Radioti, A., Tomás, A. T., Grodent, D., Gérard, J. C., Gustin, J., Bonfond, B., Krupp, N., Woch, J., & Menietti, J. D. (2009). Correction to “Equatorward diffuse auroral emissions at Jupiter: Simultaneous HST and Galileo observations”. Geophysical Research Letters, 36, L09103. https://doi.org/10.1029/2009GL038676
Ray, L. C., Ergun, R. E., Delamere, P. A., & Bagenal, F. (2010). Magnetosphere-ionosphere coupling at Jupiter: Effect of field-aligned potentials on angular momentum transport. Journal of Geophysical Research, 115, A09211. https://doi.org/10.1029/2010JA015423
Saur, J., Janser, S., Schreiner, A., Clark, G., Mauk, B. H., Kollmann, P., Ebert, R. W., Allegrini, F., Szalay, J. R., & Kotsiaros, S. (2018). Wave-particle interaction of Alfvén waves in Jupiter's magnetosphere: Auroral and magnetospheric particle acceleration. Journal of Geophysical Research: Space Physics, 123, 9560–9573. https://doi.org/10.1029/2018JA025948
Saur, J., Mauk, B. H., Mitchell, D. G., Krupp, N., Khurana, K. K., Livi, S., Krimigis, S. M., Newell, P. T., Williams, D. J., Brandt, P. C., Lagg, A., Roussos, E., & Dougherty, M. K. (2006). Anti-planetward auroral electron beams at Saturn. Nature, 439(7077), 699–702. https://doi.org/10.1038/nature04401
Saur, J., Pouquet, A., & Matthaeus, W. H. (2003). An acceleration mechanism for the generation of the main auroral oval on Jupiter. Geophysical Research Letters, 30(5), 1260. https://doi.org/10.1029/2002GL015761
Schippers, P., Blanc, M., André, N., Dandouras, I., Lewis, G. R., Gilbert, L. K., Persoon, A. M., Krupp, N., Gurnett, D. A., Coates, A. J., Krimigis, S. M., Young, D. T., & Dougherty, M. K. (2008). Multi-instrument analysis of electron populations in Saturn's magnetosphere. Journal of Geophysical Research, 113, A07208. https://doi.org/10.1029/2008JA013098
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S., Clark, G., Connerney, J. E. P., Dougherty, L. P., Ebert, R. W., Gershman, D. J., Kurth, W. S., Levin, S., Louarn, P., Mauk, B., McComas, D. J., Paranicas, C., Ranquist, D., Reno, M., Thomsen, M. F., Valek, P. W., Weidner, S., & Wilson, R. J. (2017). Plasma measurements in the Jovian polar region with Juno/JADE. Geophysical Research Letters, 44, 7122–7130. https://doi.org/10.1002/2017GL072837
Szalay, J. R., Bonfond, B., Allegrini, F., Bagenal, F., Bolton, S., Clark, G., Connerney, J. E. P., Ebert, R. W., Ergun, R. E., Gladstone, G. R., Grodent, D., Hospodarsky, G. B., Hue, V., Kurth, W. S., Kotsiaros, S., Levin, S. M., Louarn, P., Mauk, B., McComas, D. J., Saur, J., Valek, P. W., & Wilson, R. J. (2018). In situ observations connected to the Io footprint tail aurora. Journal of Geophysical Research: Planets, 123, 3061–3077. https://doi.org/10.1029/2018JE005752
Valek, P. W., Allegrini, F., Bagenal, F., Bolton, S. J., Connerney, J. E. P., Ebert, R. W., Kim, T. K., Levin, S. M., Louarn, P., Mccomas, D. J., Szalay, J. R., Thomsen, M. F., & Wilson, R. J. (2019). Jovian high-latitude ionospheric ions: Juno in situ observations. Geophysical Research Letters, 46, 8663–8670. https://doi.org/10.1029/2019GL084146
Waite, J. H. Jr., Gladstone, G. R., Lewis, W. S., Goldstein, R., McComas, D. J., Riley, P., Walker, R. J., Robertson, P., Desai, S., Clarke, J. T., & Young, D. T. (2001). An auroral flare at Jupiter. Nature, 410(6830), 787–789. https://doi.org/10.1038/35071018
Waite, J. H. Jr., et al. (2000). Multispectral observations of Jupiter's aurora. Advances in Space Research, 26(10), 1453–1475. https://doi.org/10.1016/S0273-1177(00)00089-2
Wilson, R. J. (2017). JADE standard product data record and archive volume software interface specification. PDS archive volume JNO-J/SW-JAD-3-CALIBRATED-V1.0 at https://pds.nasa.gov/
Yao, Z. H., Grodent, D., Kurth, W. S., Clark, G., Mauk, B. H., Kimura, T., Bonfond, B., Ye, S. Y., Lui, A. T., Radioti, A., Palmaerts, B., Dunn, W. R., Ray, L. C., Bagenal, F., Badman, S. V., Rae, I. J., Guo, R. L., Pu, Z. Y., Gérard, J. C., Yoshioka, K., Nichols, J. D., Bolton, S. J., & Levin, S. M. (2019). On the relation between Jovian aurorae and the loading/unloading of the magnetic flux: Simultaneous measurements from Juno, Hubble Space Telescope, and Hisaki. Geophysical Research Letters, 46, 11,632–11,641. https://doi.org/10.1029/2019GL084201
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.