clay minerals; stabilization; construction material
Abstract :
[en] The interaction of marly soils and buildings in the town of N'Gaous has led to the appearance of deformations and disturbances that have affected many constructions due to the swelling of the underlying soil. In addition, when these soils are used as construction material, embankments, they are extremely problematic. In this article, three sets of samples, from three different locations, were sampled. Their average carbonate content varies from 14% to 33%.The mineralogical and microsctructural characteristics of these soils are studied by X-ray diffraction (XRD), TG/DTA and SEM analysis. These are mainly smectite clays containing kaolinite and other minor constituents. They all have similar structure, laminar texture with an arrangement of clay particles oriented parallel to the bedding and pores of varying size. These soils are very plastic and have a plasticity index ranging from 41.5 to 54.3%. It was found that the swelling pressure before any treatment ranged from 2.3 to 2.7 bars, after treatment the swelling pressure becomes stable with 5% lime, this behavior has a link with the formation of a cementitious phase of calcium silicate hydrate (CSH) type, as revealed by XRD, ATD/TG and analysis and SEM. In terms of results, it was found that the addition of quicklime has clearly reduced the swelling of the tested samples. It was also found that the presence of carbonates with the above mentioned contents in the studied samples (<50%) does not affect negatively the lime treatment of these soils. However, it promotes the stabilization of swelling, which gives encouraging results.
Research Center/Unit :
AGEs
Disciplines :
Earth sciences & physical geography
Author, co-author :
Benyahia, S.
Boumezbeur, A.
Lamouri, B.
Fagel, Nathalie ; Université de Liège - ULiège > Département de géologie > Argiles, géochimie et environnements sédimentaires
Language :
English
Title :
Swelling properties and lime stabilization of N'Gaous expansive marls, NE Algeria
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Afès, M., Didier, G., Stabilization of expansive soils: the case of clay in the area of Mila Algeria. Bull. Eng. Geol. Environ. 59 (2000), 75–83.
Al-Amoudi, O.S.B., Khan, K., Al-Kahtani, N.S., Stabilization of a Saudi calcareous marl soil. Construct. Build. Mater. 24 (2010), 1848–1854.
Al-Homoud, A.S., Basma, A.A., Husein, M.A.I., Al-Bashabsheh, M.A., Cyclic swelling behaviour of clays. J. Geotech. Eng. 121:7 (1995), 562–565.
Al-Mukhtar, M., Lasledj, A., Alcover, J.F., Behavior and mineralogy changes in lime-treated expansive soil at 20°C. Appl. Clay Sci. 50:2 (2010), 191–198.
Al-Mukhtar, M., Khattab, S., Alcover, J.F., Microstructure and geotechnical properties of lime-treated expansive clayey soil. Eng. Geol. 139–140 (2012), 17–27.
Al-Rawas, A.A., Hagoa, A.W., Hilal, A.S., Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman. Int. J. Build. Environ. 40 (2005), 681–687.
Al-Swaidani, A., Hammoud, I., Meziab, A., Effect of adding natural pozzolana on geotechnical properties of lime-stabilised clayey soil. J. Rock Mech. Geotech. Eng., 8(5), 2016, 714e25.
Amri, S., Akchiche, M., Bennabi, A., Hamzaoui, R., Geotechnical and mineralogical properties of treated clayey soil with dune sand. J. Afr. Earth Sci. 152 (2019), 140–150.
Ashraf, J.M., Walker, R., Effect of lime moisture and compaction on a clay soil. High Res. Record 29 (1963), 1–12.
Audiguier, M., Geremew, Z., Laribi, S., Cojean, R., Caractérisation au laboratoire de la sensibilité au retrait-gonflement des sols argileux. Rev. Fr. Geotech. 120–121 (2007), 67–82.
Bellion, Y., Balais, J., Explanatory Notice of the Scale Geological Map of N'gaous 1/50000. 1976.
Bekkouche, A., Djedid, A., Aissa Mamoune, S.M., An experimental investigation on the assessment of the swelling parameters. International Congress in Civil Engineering, 2002, Eastern Mediterranean University the Gazimagusa.
Basma, A.A., Tuncer, E.R., Effect of lime on volume change and compressibility of expansive clays. Transport. Res. Rec. 1295 (1991), 52–61.
Bell, F.G., Lime stabilization of clay minerals and soils. Eng. Geol. 42 (1996), 223–237.
Bigot, G., Zerhouni, M.I., Retrait Gonflement et Tassement des sols fins. Bulletin des LPC 229 (2000), 105–114.
Bose, B., Geo-engineering properties of expansive soil stabilized with fly ash. EJGE, 17, 2012.
Boski, T., Pessoa, J., Pedro, P., Thorez, J., Dias, J.M.A., Hall, I.R., Factors governing abundance of hydrolyzable amino acids in the sediments from the N.W. European Continental Margin. Prog. Oceanogr. 42 (1998), 145–164.
Bourokba, M.S.A., Djelloul, R., Hachichi, A., Fleureau, J.M., Effect of cement on suction and pore size distribution before and after swelling of a natural clay from Algeria. Advances in Characterization and Analysis of Expansive Soils and Rocks, Sustainable Civil Infrastructures, 2018.
Cardoso, R., Maranha das Neves, E., Hydro-mechanical characterization of lime-treated and untreated marls used in a motorway embankment. Eng. Geol. 133–134 (2012), 76–84.
Chemeda, Y., Deneele, D., Christidis, G., Ouvrard, G., Influence of hydrated lime on the surface properties and interaction of kaolinite particles. Appl. Clay Sci. 107 (2015), 1–13.
Chen, Y.L., Foundations on Expansive Soils. 1988, Elsevier Science publishing company Inc., New York, 714–728.
Cheshomi, A., Eshaghi, A., Hassanpour, J., Effect of lime and fly ash on swelling percentage and Atterberg limits of sulfate-bearing clay. Appl. Clay Sci. 135 (2017), 190–198.
Cook, H.E., Johnson, P.D., Matti, J.C., Zemmels, I., Methods of sample preparation and X-ray diffraction analysis in X-ray mineralogy laboratory pp. 999 -1007. Hayes, D.E., Frakes, L.A., et al. (eds.) Init. Repts. DSDP, 1975, U.S. Govt. Printing Office, Washington, 28.
Cui, Y.J., Yahia-Aissa, M., Delage, P., A model for the volume change behavior of heavily compacted swelling soils. Eng. Geol. 64 (2002), 233–250.
Cuisinier, O., Jean-Claude, A., Le Borgne, T., Deneele, D., Microstructure and hydraulic conductivity of a compacted lime-treated soil. Eng. Geol. 123 (2011), 187–193.
Deneele, D., Le Runigo, B., Cui, Y.J., Cuisinier, O., Ferber, V., Experimental assessment regarding leaching of lime-treated silt. Construct. Build. Mater. 112 (2016), 1032–1040.
De Windt, L., Deneele, D., Maubec, N., Kinetics of lime/bentonite pozzolanic reactions at 20 and 50 °C: batch tests and modelling. Cement Concr. Res. 59 (2014), 34–42.
Delage, P., Some microstructure effects on the behaviour of compacted swelling clays used for engineered barriers. Chin. J. Rock Mech. Eng. 25:4 (2006), 721–740.
Derriche, Z., Kaoua, F., Sols gonflants: Méthodologie pour la conception des ouvrages. Rev. Tech. de l'ENTP Algérie Équipement 12 (1994), 24–31.
Derriche, Z., Lazzali, V., Analyse des mécanismes de stabilisation d'un sol gonflant par apport de chaux sous différentes formes. Int. Proc. Eng. Geol. Environ. 1 (1997), 79–84.
Eades, J.L., Grim, R.E., A quick test to determine lime requirements for lime stabilization. Highway. Res. Board, 1966, 61–72.
Elert, K., Nieto, J.F., Azañón, M., Effects of lime treatments on marls. Appl. Clay Sci. 135 (2017), 611–619.
Elert, K., Azañón, J.M., Nieto, F., Smectite formation upon lime stabilization of expansive marls. Appl. Clay Sci. 158 (2018), 29–36.
El Shinawi, A., Instability improvement of the subgrade soils by lime addition at Borg El Arab, Alexandria, Egypt. J. Afr. Earth Sci. 130 (2017), 195–201.
Fagel, N., Thamó-Bózsó, E., Heim, B., Mineralogical signatures of Lake Baikal sediments: source of sediment supplies through Late Quaternary. Sediment. Geol. 194 (2007), 37–59.
Filliat, G., La pratique des sols et fondations. 1981, Editions du Moniteur.
Fleureau, J.M., Kheirbek, S., Soemitro, R., Taibi, S., Behavior of clayey soils on drying-wetting paths. Can. Geotech. J. 30 (1993), 287–296.
Gueddouda, M.K., Goual, I., Benabed, B., Effet de chaux, ciment et sel sur le potentiel de gonflement des argiles gonflantes des régions arides en Algérie. Eur. J. Environ. Civil. Eng. 17:5 (2013), 315–328.
Guidobaldi, G., Cambi, C., Cecconi, M., Deneele, D., Paris, M., Russo, G., Vitale, E., Multi-scale analysis of the mechanical improvement induced by lime addition on a pyroclastic soil. Eng. Geol. 221 (2017), 193–201.
Hachichi, A., Fleureau, J.M., Caractérisation et stabilisation de quelques sols gonflants d'Algérie. Revue Française de géotechniques 86 (1999), 37–51.
Holtzapffel, T., Les Minéraux Argileux : Préparation, Analyse diffractométrique et détermination. 1985, Société Géologique du Nord, France, 77–109 Publication n°12.
Khemissa, M., Mahamedi, A., Cement and lime mixture stabilization of an expansive over consolidated clay. Appl. Clay Sci. 95 (2014), 104–110.
Lamas, F., Irigaray, C., Chacon, J., Geotechnical characterization of carbonate marls for the construction of impermeable dam cores. Eng. Geol. 66 (2002), 283–294.
Lamas, F., Lamas-López, F., Bravo, R., Influence of carbonate content of marls used in dams: geotechnical and statistical characterization. Eng. Geol. 177 (2014), 32–39.
Laribi, S., Cojean, R., Audiguier, M., Grambin-Lapeyre, C., Geremew, Z., Essai d'adsorption de bleu de méthylène: influence de paramètres du protocole expérimental sur la valeur au bleu en fonction de la minéralogie des argiles. Rev. Fr. Geotech. 120121 (2007), 83–90.
Lemaire, K., Deneele, D., Bonnet, S., Legret, M., Effects of lime and cement treatment on the physicochemical, microstructural and mechanical characteristics of a plastic silt. Eng. Geol. 166 (2013), 255–261.
Le Runigo, B., Cuisinier, O., Cui, Y.J., Ferber, V., Deneele, D., Impact of initial state on the fabric and permeability of a lime treated silt under long-term leaching. Can. Geotech. J. 46:11 (2009), 1243–1257.
Luis, A., Deng, L., Development of mechanical properties of Edmonton stiff clay treated with cement and fly ash. Int. J. Geotech. Eng., 2018.
Maubec, N., Deneele, D., Ouvrard, G., Influence of the clay type on the strength evolution of lime treated material. Appl. Clay Sci. 137 (2017), 107–114.
Nalbantoglu, Z., Tuncer, E.R., Compressibility and hydraulic conductivity of a chemically treated expansive clay. Can. Geotech. J. 38 (2001), 154–160.
Nowamooz, H., Masrouri, F., Comportement hydromécanique des sols gonflants soumis aux cycles hydriques. Rev. Fr. Geotech. 120–121 (2007), 143–154.
Por, S., Nishimura, S., Likitlersuang, S., Deformation characteristics and stress responses of cement-treated expansive clay under confined one-dimensional swelling. Appl. Clay Sci. 146 (2017), 316–324.
Quang, N.D., Chai, JCh, Permeability of lime- and cement-treated clayey soils. Can. Geotech. J. 52:9 (2015), 1221–1227.
Rao, S.M., Shivananda, P., Role of curing temperature in progress of lime–soil reactions. Geotech. Geol. Eng. 23:1 (2005), 79–85.
Seed, H.B., Woodward, R.J., Lundgren, R., Prediction of swelling potential for compacted clays. ASCE. J. Soil Mech. Found Div. 88:SM3 (1962), 53–87.
Sol-Sánchez, M., Castro, J., Ureña, C.G., Azañón, J.M., Stabilisation of clayey and marly soils using industrial wastes: pH and laser granulometry indicators. Eng. Geol. 200 (2016), 10–17.
Ureña, C., Azañón, J.M., Corpas, F.A., Salazar, L.M., Ramírez, A., Rivas, F., Mochón, I., Sierra, M.J., Construcción de un terraplén con suelo estabilizado mediante el uso de agentes alternativos en la Autovía del Olivar. Carreteras 203 (2015), 63–72.
Vakili, M.V., Chegenizadeh, A., Nikraz, H., Keramatikerman, M., Investigation on shear strength of stabilised clay using cement, sodium silicate and slag. Appl. Clay Sci. 124–125 (2016), 243–251.
Vijayvergiya, V.N., Ghazzaly, G., Prediction of swelling potential for natural clays. Proceedings 3rd International Conference on Expansive Soil Haifa, vol. I, 1973, 227–236.
Vitale, E., Deneele, D., Paris, M., Russo, G., Multi-scale analysis and time evolution of pozzolanic activity of lime treated clays. Appl. Clay Sci. 141 (2017), 36–45.
Vitale, E., Deneele, D., Russo, G., Ouvrard, G., Short-term effects on physical properties of lime treated kaolin. Appl. Clay Sci. 132–133 (2016), 223–231.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.