Passive control law; Multimodal vibration mitigation; Piezoelectric shunt; Digital control
Abstract :
[en] A novel sequential tuning procedure for passive piezoelectric shunts targeting multiple structural modes is proposed in this work. The control authority on each targeted mode can be quantitatively chosen ab initio and is shown to be limited by passivity requirements, which highlights the fundamental limitations of multimodal piezoelectric shunts. Based on effective characteristics of the piezoelectric system around resonance, electrical damping ratios and resonance frequencies are derived using well-established single-mode formulae from the literature, thereby fully specifying the characteristics of the shunt impedance. The proposed approach is numerically verified and experimentally validated on piezoelectric beams by emulating the shunt with a digital vibration absorber.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Forward, R.L., Electronic damping of vibrations in optical structures. Appl. Opt., 18(5), 1979, 690, 10.1364/AO.18.000690 URL https://www.osapublishing.org/abstract.cfm?URI=ao-18-5-690.
Hagood, N., von Flotow, A., Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146:2 (1991), 243–268, 10.1016/0022-460X(91)90762-9 URL https://linkinghub.elsevier.com/retrieve/pii/0022460X91907629.
Wu, S.-y., Piezoelectric shunts with a parallel R-L circuit for structural damping and vibration control. Johnson, C.D., (eds.) Spie, Vol. 2720, 1996, 259–269, 10.1117/12.239093 URL http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1017503.
Soltani, P., Kerschen, G., Tondreau, G., Deraemaeker, A., Piezoelectric vibration damping using resonant shunt circuits: an exact solution. Smart Mater. Struct., 23(12), 2014, 125014, 10.1088/0964-1726/23/12/125014 URL http://stacks.iop.org/0964-1726/23/i=12/a=125014?key=crossref.798743ce34b627bed945b046d8a6b51a.
Ikegame, T., Takagi, K., Inoue, T., Exact solutions to H∞ and H2 optimizations of passive resonant shunt circuit for electromagnetic or piezoelectric shunt damper. J. Vib. Acoust. Trans. ASME, 141(3), 2019, 10.1115/1.4042819.
Lesieutre, G.A., Vibration damping and control using shunted piezoelectric materials. Shock Vib. Dig. 30:3 (1998), 187–195, 10.1177/058310249803000301.
Ahmadian, M., Deguilio, A.P., Recent advances in the use of piezoceramics for vibration suppression. Shock Vib. Dig. 33:1 (2001), 15–22, 10.1177/058310240103300102.
Gripp, J., Rade, D., Vibration and noise control using shunted piezoelectric transducers: A review. Mech. Syst. Signal Process. 112 (2018), 359–383, 10.1016/j.ymssp.2018.04.041 URL https://linkinghub.elsevier.com/retrieve/pii/S0888327018302437.
Hollkamp, J.J., Multimodal passive vibration suppression with piezoelectric materials and resonant shunts. J. Intell. Mater. Syst. Struct. 5:1 (1994), 49–57, 10.1177/1045389X9400500106 URL http://journals.sagepub.com/doi/10.1177/1045389X9400500106.
Wu, S.-y., Davis, L.P., (eds.) Method for Multiple-Mode Shunt Damping of Structural Vibration Using a Single PZT Transducer, Vol. 3327, 1998, 159–168, 10.1117/12.310680 URL http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=940157.
Moheimani, S.O.R., Fleming, A.J., Piezoelectric Transducers for Vibration Control and Damping Advances in Industrial Control, 2006, Springer-Verlag, London, 10.1007/1-84628-332-9 URL http://link.springer.com/10.1007/1-84628-332-9.
Fleming, A., Behrens, S., Reza Moheimani, S., Optimization and implementation of multimode piezoelectric shunt damping systems. IEEE/ASME Trans. Mechatronics 7:1 (2002), 87–94, 10.1109/3516.990891 URL http://ieeexplore.ieee.org/document/990891/.
Moheimani, S., A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers. IEEE Trans. Control Syst. Technol. 11:4 (2003), 482–494, 10.1109/TCST.2003.813371 URL http://ieeexplore.ieee.org/document/1208326/.
Jeon, J.Y., Passive vibration damping enhancement of piezoelectric shunt damping system using optimization approach. J. Mech. Sci. Technol. 23:5 (2009), 1435–1445, 10.1007/s12206-009-0402-8.
Cigada, A., Manzoni, S., Redaelli, M., Vanali, M., Optimization of the current flowing technique aimed at semi-passive multi-modal vibration reduction. J. Vib. Control 18:2 (2012), 298–312, 10.1177/1077546311407537 URL http://journals.sagepub.com/doi/10.1177/1077546311407537.
Berardengo, M., Manzoni, S., Conti, A.M., Multi-mode passive piezoelectric shunt damping by means of matrix inequalities. J. Sound Vib. 405 (2017), 287–305, 10.1016/j.jsv.2017.06.002.
Gardonio, P., Zientek, M., Bo, L.D., Panel with self-tuning shunted piezoelectric patches for broadband flexural vibration control. Mech. Syst. Signal Process. 134 (2019), 1–32, 10.1016/j.ymssp.2019.106299.
Raze, G., Paknejad, A., Zhao, G., Collette, C., Kerschen, G., Multimodal vibration damping using a simplified current blocking shunt circuit. J. Intell. Mater. Syst. Struct. 31:14 (2020), 1731–1747, 10.1177/1045389X20930103 URL http://journals.sagepub.com/doi/10.1177/1045389X20930103.
Lossouarn, B., Aucejo, M., Deü, J.-F., Multon, B., Design of inductors with high inductance values for resonant piezoelectric damping. Sensors Actuators A 259 (2017), 68–76, 10.1016/j.sna.2017.03.030 URL https://linkinghub.elsevier.com/retrieve/pii/S0924424716309785.
Dekemele, K., Van Torre, P., Loccufier, M., High-voltage synthetic inductor for vibration damping in resonant piezoelectric shunt. J. Vib. Control, 2020, 107754632095261, 10.1177/1077546320952612 URL http://journals.sagepub.com/doi/10.1177/1077546320952612.
Hagood, N.W., Chung, W.H., Von Flotow, A., Modelling of piezoelectric actuator dynamics for active structural control. J. Intell. Mater. Syst. Struct. 1:3 (1990), 327–354, 10.1177/1045389X9000100305 URL http://journals.sagepub.com/doi/10.1177/1045389X9000100305.
Thomas, O., Deü, J.-F., Ducarne, J., Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite element formulation and electromechanical coupling coefficients. Internat. J. Numer. Methods Engrg. 80:2 (2009), 235–268, 10.1002/nme.2632 URL http://doi.wiley.com/10.1002/nme.2632.
Preumont, A., Vibration Control of Active Structures, third ed. Solid Mechanics and Its Applications, vol. 179, 2011, Springer Netherlands, Dordrecht, 10.1007/978-94-007-2033-6 URL http://link.springer.com/10.1007/978-94-007-2033-6.
Franklin, G.F., Powell, J.D., Emami-Naeini, A., Feedback Control of Dynamic Systems. 2015, Pearson London.
Høgsberg, J., Krenk, S., Calibration of piezoelectric RL shunts with explicit residual mode correction. J. Sound Vib. 386 (2017), 65–81, 10.1016/j.jsv.2016.08.028.
Toftekær, J.F., Benjeddou, A., Høgsberg, J., Optimal piezoelectric resistive – inductive shunt damping of plates with residual mode correction. J. Intell. Mater. Syst. Struct. 29:16 (2018), 3346–3370, 10.1177/1045389X18798953.
Foster, R.M., A reactance theorem. Bell Syst. Tech. J. 3:2 (1924), 259–267, 10.1002/j.1538-7305.1924.tb01358.x URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6773392.
Chen, W.-K., Passive, Active, and Digital Filters. 2018, CRC Press, 10.1201/9781315219141 URL https://www.taylorfrancis.com/books/9781420058864.
Yamada, K., Matsuhisa, H., Utsuno, H., Sawada, K., Optimum tuning of series and parallel LR circuits for passive vibration suppression using piezoelectric elements. J. Sound Vib. 329:24 (2010), 5036–5057, 10.1016/j.jsv.2010.06.021 URL https://linkinghub.elsevier.com/retrieve/pii/S0022460X10004116.
Høgsberg, J., Krenk, S., Balanced calibration of resonant shunt circuits for piezoelectric vibration control. J. Intell. Mater. Syst. Struct. 23:17 (2012), 1937–1948, 10.1177/1045389X12455727 URL http://journals.sagepub.com/doi/10.1177/1045389X12455727.
Moheimani, S., Behrens, S., Multimode piezoelectric shunt damping with a highly resonant impedance. IEEE Trans. Control Syst. Technol. 12:3 (2004), 484–491, 10.1109/TCST.2004.824318 URL http://ieeexplore.ieee.org/document/1291419/.
Brune, O., Synthesis of a Finite Two-Terminal Network Whose Driving-Point Impedance is a Prescribed Function of Frequency. (Ph.D. thesis), 1931, Massachusetts Institute of Technology URL https://dspace.mit.edu/bitstream/handle/1721.1/10661/36311006-MIT.pdf?sequence=2.
Raze, G., Dietrich, J., Kerschen, G., Onset and stabilization of delay-induced instabilities in piezoelectric digital vibration absorbers. 2021 arXiv:2106.06715.
Ducarne, J., Thomas, O., Deü, J.F., Placement and dimension optimization of shunted piezoelectric patches for vibration reduction. J. Sound Vib. 331:14 (2012), 3286–3303, 10.1016/j.jsv.2012.03.002.
Berardengo, M., Manzoni, S., Vanali, M., Bonsignori, R., Enhancement of the broadband vibration attenuation of a resistive piezoelectric shunt. J. Intell. Mater. Syst. Struct., 2021, 10.1177/1045389X20988090 1045389X20988090.
Lossouarn, B., Deü, J.F., Kerschen, G., A fully passive nonlinear piezoelectric vibration absorber. Phil. Trans. R. Soc. A, 376(2127), 2018, 10.1098/rsta.2017.0142.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.