scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Flory, P.J., Thermodynamics of high polymer solutions. J. Chem. Phys. 9 (1941), 660–661.
Flory, P.J., Thermodynamics of high polymer solutions. J. Chem. Phys. 10 (1942), 51–61.
Huggins, M.L., Solutions of long chain compounds. J. Chem. Phys. 9 (1941), 440–441.
Wilmers, J., Bargmann, S., A continuum mechanical model for the description of solvent induced swelling in polymeric glasses: thermomechanics coupled with diffusion. Eur. J. Mech. A, Solids 53 (2015), 10–18.
Higgins, J.S., Lipson, J.E.G., White, R.P., A simple approach to polymer mixture miscibility. Philos. Trans. R. Soc. A 368 (2010), 1009–1025.
Hohenberg, P., Krekhov, A., An introduction to the Ginzburg-Landau theory of phase transitions and nonequilibrium patterns. Phys. Rep., 572, 2014.
Kozuch, D.J., Zhang, W., Milner, S.T., Predicting the Flory-Huggins χ parameter for polymers with stiffness mismatch from molecular dynamics simulations. Polymers, 8, 2016, 241.
Galenko, P., Jou, D., Kinetic contribution to the fast spinodal decomposition controlled by diffusion. Physica A 388 (2009), 3113–3123.
Mackay, M.E., Tuteja, A., Duxbury, P.M., Hawker, C.J., van Horn, B., Guan, Z., Chen, G., Krishnan, R.S., General strategies for nanoparticle dispersion. Science 311 (2006), 1740–1743.
van Rijssel, J., Erné, B.H., Meeldijk, J.D., Casavola, M., Vanmaekelbergh, D., Meijerink, A., Philipse, A.P., Enthalpy and entropy of nanoparticle association from temperature-dependent cryo-TEM. Phys. Chem. Chem. Phys. 13 (2011), 12770–12774.
Choi, S.U.S., Eastman, J.A., Enhancing thermal conductivity of fluids with nanoparticles. Conference: 1995 International Mechanical Engineering Congress and Exhibition, 1995, ASME, 99–105.
Machrafi, H., An extended thermodynamic model for size-dependent thermoelectric properties at nanometric scales: application to nanofilms, nanocomposites and thin nanocomposite films. Appl. Math. Model. 40 (2016), 2143–2160.
Machrafi, H., Enhancement of a photovoltaic cell performance by a coupled cooled nanocomposite thermoelectric hybrid system, using extended thermodynamics. Curr. Appl. Phys. 17 (2017), 890–911.
Taha-Tijerina, J., Narayanan, T.N., Gao, G., Rohde, M., Tsentalovich, D.A., Pasquali, M., Ajayan, P.M., Electrically insulating thermal nano-oils using 2D fillers. ACS Nano 6 (2012), 1214–1220.
Cardellini, A., Fasano, M., Bigdeli, M.B., Chiavazzo, E., Asinari, P., Thermal transport phenomena in nanoparticle suspensions. J. Phys. Condens. Matter, 28, 2016, 483003.
Lin, Y., Sun, S., Zhang, Q., Shen, H., Shao, Q., Wang, L., Jiang, W., Jiang, W., Preparation of AgNPs/Ca3Co4O9 nanocomposites with enhanced thermoelectric performance. Mater. Today Commun. 6 (2016), 44–49.
Machrafi, H., Lebon, G., Iorio, C.S., Effect of volume-fraction dependent agglomeration of nanoparticles on the thermal conductivity of nanocomposites: applications to epoxy resins, filled by SiO2, AlN and MgO nanoparticles. Compos. Sci. Technol. 130 (2016), 78–87.
Hai, Z., Akbari, M.K., Wei, Z., Xue, C., Xu, H., Hu, J., Hyde, L., Zhuiykov, S., TiO2 nanoparticles-functionalized two-dimensional WO3 for high-performance supercapacitors developed by facile two-step ALD process. Mater. Today Commun. 12 (2017), 55–62.
Ahmad, R., Wolfbeis, O.S., Hahn, Y.B., Alshareef, H.N., Torsi, L., Salama, K.N., Deposition of nanomaterials: a crucial step in biosensor fabrication. Mater. Today Commun. 17 (2018), 289–321.
Saidur, R., Leong, K.Y., Mohammad, H., A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15 (2011), 1646–1668.
de la Hoz, J.M.M., Tovar, R.C., Balbuena, P.B., Size effect on the stability of Cu–Ag nanoalloys. Mol. Simul. 35 (2009), 785–794.
Ohja, S., Dang, A., Hui, C.M., Mahoney, C., Matyjaszewski, K., Bockstaller, M.R., Strategies for the synthesis of thermoplastic polymer nanocomposite materials with high inorganic filling fraction. Langmuir 29 (2013), 8989–8996.
Dominguez-Juarez, J.L., Vallone, S., Lempel, A., Moocarme, M., Oh, J., Gafney, H.D., Vuong, L.T., Influence of solvent polarity on light-induced thermal cycles in plasmonic nanofluids. Optica 2 (2015), 447–453.
Lovell, C.S., Wise, K.E., Kim, J.W., Lillehei, P.T., Harrison, J.S., Park, C., Thermodynamic approach to enhanced dispersion and physical properties in a carbon nanotube/polypeptide nanocomposite. Polymer 50 (2009), 1925–1932.
Borukhov, I., Leibler, L., Enthalpic stabilization of brush-coated particles in a polymer melt. Macromolecules 35 (2002), 5171–5182.
Anderson, B.D., Predicting solubility/miscibility in amorphous dispersions: it is time to move beyond regular solution theories. J. Pharm. Sci. 107 (2018), 24–33.
Williams, W.C., Experimental and theoretical investigation of transport phenomena in nanoparticle colloids (Nanofluids). PhD thesis, 2006, MIT.
Machrafi, H., Lebon, G., Fluid flow through porous and nanoporous media within the prism of extended thermodynamics: emphasis on the notion of permeability. Microfluid. Nanofluid. 22:65 (2018), 1–12.
Ichihara, S., Glass transition temperature of homogeneous blends and copolymers. Polym. J. 32 (2000), 823–827.
Slark, A.T., Application of the Kwei equation to the glass transition of dye solute-polymer blends. Polymer 40 (1999), 1935–1941.
Nicolis, G., de Decker, Y., Stochastic thermodynamics of Brownian motion. Entropy, 19, 2017, 434.
Sharma, K.R., Nanostructuring of nanorobots for use in nanomedicine. Int. J. Eng. Technol. 2 (2012), 116–134.
Kwei, T.K., Pearce, E.M., Pennacchia, J.R., Charton, M., Correlation between the glass transition temperatures of polymer mixtures and intermolecular force parameters. Macromolecules 20 (1987), 1174–1176.
Kwei, T.K., The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. Macromolecules 22 (1984), 307–313.
Nelson, P.H., Osmosis and thermodynamics explained by solute blocking. Eur. Biophys. J. 46 (2017), 59–64.
Tadros, T.F., Interfacial Phenomena and Colloid Stability. 2015, De Gruyter.
Miermont, A., Waharte, F., Hu, S., McClean, M.N., Bottani, S., Léon, S., Hersen, P., Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding. Proc. Natl. Acad. Sci. USA 110 (2013), 5725–5730.
Zavitsas, A.A., Properties of water solutions of electrolytes and nonelectrolytes. J. Phys. Chem. B 105 (2001), 7805–7817.
Rodenburg, J., Dijkstra, M., van Roij, R., Van't Hoff's law for active suspensions: the role of the solvent chemical potential. Soft Matter 13 (2017), 8957–8963.
Vollebregt, H.M., van der Sman, R.G.M., Boom, R.M., Suspension flow modelling in particle migration and microfiltration. Soft Matter 6 (2010), 6052–6064.
Buyevich, Y.A., Particle distribution in suspension shear flow. Chem. Eng. Sci. 51:4 (1996), 635–647.
Carpen, I.C., Brady, J.F., Gravitational instability in suspension flow. J. Fluid Mech. 472 (2002), 201–210.
Fang, A., Mammoli, A.A., Brady, J.F., Ingber, M.S., Mondy, L.A., Graham, A.L., Flow-aligned tensor models for suspension flows. Int. J. Multiph. Flow 28 (2002), 137–166.
Leighton, D., Acrivos, A., Viscous resuspension. Chem. Eng. Sci. 41 (1986), 1377–1384.
Teran, A.A., Balsara, N.P., Thermodynamics of block copolymers with and without salt. J. Phys. Chem. B 118 (2014), 4–17.
Schweizer, K.S., Curro, J.G., Analytic reference interaction site model-mean spherical approximation theory of flexible polymer blends: effects of spatial and fractal dimensions. J. Chem. Phys. 94 (1991), 3986–4000.
K. Kamide, S. Matsuda, M. Saito, Evaluation of concentration dependence of χ-parameter, Flory temperature and entropy parameter for polymer-solvent system from their critical solution temperature and concentration data.
Ripoll, M., Mussawisade, K., Winkler, R.G., Gompper, G., Dynamic regimes of fluids simulated by multiparticle-collision dynamics. Phys. Rev. E, 72, 2005, 016701.
Burghelea, T., Bertola, V., Transport Phenomena in Viscoelastic Fluids. 2019, Springer.
Huilgol, R.R., Phan-Thien, N., Fluid Mechanics of Viscoelasticity. 1997, Elsevier.
Batchelor, G.K., Brownian diffusion of particles with hydrodynamic interaction. J. Fluid Mech., 74, 1976, 1.
Boon, J.P., Yip, S., Molecular Hydrodynamics. 1980, McGraw-Hill, New York.
Newman, H.D., Yethiraj, A., Clusters in sedimentation equilibrium for an experimental hard-sphere-plus-dipolar Brownian colloidal system. Sci. Rep., 5, 2015, 13572.
Blees, M.H., Geurts, J.M., Leyte, J.C., Self-diffusion of charged polybutadiene latex particles in water measured by pulsed field gradient NMR. Langmuir 12 (1996), 1947–1957.
de Kruif, C.G., Jansen, J.W., Vrij, A., Safran, S.A., Clark, N.A., (eds.) Physics of Complex and Supramolecular Fluids, 1987, Wiley, New York.
Ozawa, K.Y., Okuzono, T., Doi, M., Diffusion process during drying to cause the skin formation in polymer solutions. Jpn. J. Appl. Phys., 45, 2006, 8817.
Zoumpouli, G.A., Yiantsios, S.G., Hydrodynamic effects on phase separation morphologies in evaporating thin films of polymer solutions. Phys. Fluids, 28, 2016, 082108.
Holmberg, J.P., Abbas, Z., Ahlberg, E., Hassellöv, M., Bergenholtz, J., Nonlinear concentration dependence of the collective diffusion coefficient of TiO2 nanoparticle dispersions. J. Phys. Chem. C 115 (2011), 13609–13616.
Fang, X., Xuan, Y., Li, Q., Experimental investigation on enhanced mass transfer in nanofluids. Appl. Phys. Lett., 95, 2009, 203108.
Desai, T., Keblinski, P., Kumar, S.K., Molecular dynamics simulations of polymer transport in nanocomposites. J. Chem. Phys., 122, 2005, 134910.
Smith, G.D., Bedrov, D., Li, L., Byutner, O., A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites. J. Chem. Phys., 117, 2002, 9478.
Mouhli, A., Ayeb, H., Othman, T., Fresnais, J., Dupuis, V., Nemitz, I.R., Pendery, J.S., Rosenblatt, C., Sandre, O., Lacaze, E., Influence of a dispersion of magnetic and nonmagnetic nanoparticles on the magnetic Fredericksz transition of the liquid crystal 5CB. Phys. Rev. E, 96, 2017, 012706.
Kops-Werkhoven, M.M., Pathmamanoharan, C., Vrij, A., Fijnaut, H.M., Concentration dependence of the self-diffusion coefficient of hard, spherical particles measured with photon correlation spectroscopy. J. Chem. Phys. 77 (1982), 5913–5922.
Jou, D., Casas-Vazquez, J., Criado-Sancho, M., Thermodynamics of Fluids Under Flow. 2011, Springer.
Karatrantos, A., Composto, R.J., Winey, K.I., Clarke, N., Polymer and spherical nanoparticle diffusion in nanocomposite. J. Chem. Phys., 146, 2017, 203331.
Schmidt, M., Maurer, F.H.J., Pressure-volume-temperature properties and free volume parameters of PEO/PMMA blends. J. Polym. Sci., Part B, Polym. Phys. 36 (1998), 1061–1080.
Wen, G., Sun, Z., Shi, T., Yang, J., Jiang, W., An, L., Li, B., Thermodynamics of PMMA/SAN blends: application of the Sanchez-Lacombe lattice fluid theory. Macromolecule 34 (2001), 6291–6296.
Iosilevskiy, I., Gryaznov, V., Solovev, A., Properties of high-temperature phase diagram and critical point parameters in silica. High Temp., High Press. 43 (2014), 227–241.
Schweigert, I.V., Lehtinen, K.E.J., Carrier, M.J., Zachariah, M.R., Structure and properties of silica nanoclusters at high temperatures. Phys. Rev. B, 65, 2002, 235410.
Higa, K., Wu, S.L., Parkinson, D.Y., Fu, Y., Ferreira, S., Battaglia, V., Srinivasan, V., Comparing macroscale and microscale simulations of porous battery electrodes. J. Electrochem. Soc., 2017, E3473–E3488.
Stewart, S.G., Newman, J., The use of UV/vis absorption to measure diffusion coefficients in LiPF6 electrolytic solutions. J. Electrochem. Soc. 155:1 (2008), F13–F16.
Almeida, P.F., Vaz, W.L.C., Lateral diffusion in membranes. Handbook of Biological Physics, vol. 1, 1995, 305–357.
Rathore, D.K., Kumar, S., Experimental investigations on diffusion of nano-additive volatile liquids in gas. Int. J. Res. Appl. Sci. Eng. Technol. 6 (2018), 1450–1456.
Motohashi, R., Hanasaki, I., Characterization of aqueous cellulose nanofiber dispersions from microscopy movie data of Brownian particles by trajectory analysis. Nanoscale Adv. 1 (2019), 421–429.
Senanayake, K.K., Shokeen, N., Fakhrabadi, E.A., Liberatore, M.W., Mukhopadhyay, A., Diffusion of nanoparticles within a semidilute polyelectrolyte solution. Soft Matter 15 (2019), 7616–7622.
Voïtchovsky, K., Kuna, J.J., Contera, S.A., Tosatti, E., Stellacci, F., Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. Nat. Nanotechnol. 5 (2010), 401–405.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.