Unpublished conference/Abstract (Scientific congresses and symposiums)
Body-force enhanced second-order computational homogenisation for non-linear cellular materials and metamaterials
Wu, Ling; Segurado, Javier; Mustafa, Syed Mohib et al.
2023ECCOMAS Thematic Conference: Computational Modelingof Complex Materials across the Scales (CMCS 2023)
 

Files


Full Text
2023_CMCS_HOBF.pdf
Author postprint (2.67 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Computational homogenisation; Second-order homogenisation; Cellular materials; Metamaterials
Abstract :
[en] When considering lattices or metamaterial local instabilities, corresponding to a change of the micro-structure morphology, classical computational homogenisation methods fail: first order computational homogenisation, which considers a classical continuum at the macro-scale, cannot capture localisation bands while second-order computational homogenisation, which considers a higher order continuum at the macro-scale, introduces a size effect with respect to the Representative Volume Element (RVE) size. The second-order computational homogenisation was thus reformulated using the idea of an equivalent homogenised volume, from which arises at the micro-scale a non-uniform body force that acts as a supplementary volume term over the RVE. In the presented method, this non-uniform body-force expression arises from the Hill-Mandel condition and depends mainly on the relation between the micro-scale and macro-scale deformation gradients [1]. We show by considering elastic and elasto-plastic metamaterials and cellular materials that this approach reduces the RVE size dependency on the homogenised response. [1] Wu, L. and Mustafa, S. M. and Segurado, J. and Noels, L.. Second-order computational homogenisation enhanced with non-uniform body forces for non-linear cellularmaterials and metamaterials. Comput. Meth. in Appl. Mech. Eng. (2023) 407: 115931
Disciplines :
Mechanical engineering
Author, co-author :
Wu, Ling ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Segurado, Javier;  IMDEA Materials
Mustafa, Syed Mohib  ;  Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Noels, Ludovic  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3) ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Language :
English
Title :
Body-force enhanced second-order computational homogenisation for non-linear cellular materials and metamaterials
Publication date :
11 October 2023
Event name :
ECCOMAS Thematic Conference: Computational Modelingof Complex Materials across the Scales (CMCS 2023)
Event organizer :
ECCOMAS
Event place :
Eindhoven, Netherlands
Event date :
10-13 October 2023
By request :
Yes
Audience :
International
European Projects :
H2020 - 862015 - MOAMMM - Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials
Name of the research project :
Multiscale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials (MOAMMM)
Funders :
EC - European Commission [BE]
Union Européenne [BE]
Funding number :
862015
Funding text :
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862015 for the project “Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials (MOAMMM) of the H2020-EU.1.2.1. - FET Open Programme.
Available on ORBi :
since 26 October 2023

Statistics


Number of views
42 (4 by ULiège)
Number of downloads
22 (1 by ULiège)

Bibliography


Similar publications



Contact ORBi