Comprehensive two-dimensional gas chromatography; Data processing; Machine Learning; Method development; Modeling; Workflow; Chromatography, Gas/methods; Thermodynamics; Algorithms; Support Vector Machine; Chromatographic separations; Chromatography (gas); Machine learning algorithms; Machine-learning; Model learning; Theoretical modeling; Work-flows; Analytical Chemistry; Biochemistry; Organic Chemistry; General Medicine
Abstract :
[en] In recent years, comprehensive two-dimensional gas chromatography (GC × GC) has been gradually gaining prominence as a preferred method for the analysis of complex samples due to its higher peak capacity and resolution power compared to conventional gas chromatography (GC). Nonetheless, to fully benefit from the capabilities of GC × GC, a holistic approach to method development and data processing is essential for a successful and informative analysis. Method development enables the fine-tuning of the chromatographic separation, resulting in high-quality data. While generating such data is pivotal, it does not necessarily guarantee that meaningful information will be extracted from it. To this end, the first part of this manuscript reviews the importance of theoretical modeling in achieving good optimization of the separation conditions, ultimately improving the quality of the chromatographic separation. Multiple theoretical modeling approaches are discussed, with a special focus on thermodynamic-based modeling. The second part of this review highlights the importance of establishing robust data processing workflows, with a special emphasis on the use of advanced data processing tools such as, Machine Learning (ML) algorithms. Three widely used ML algorithms are discussed: Random Forest (RF), Support Vector Machine (SVM), and Partial Least Square-Discriminate Analysis (PLS-DA), highlighting their role in discovery-based analysis.
Disciplines :
Chemistry
Author, co-author :
Gaida, Meriem ; Université de Liège - ULiège > Molecular Systems (MolSys) ; Organic and Biological Analytical Chemistry Group (OBiAChem), MolSys Research Unit, Liège University, Belgium
Stefanuto, Pierre-Hugues ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique ; Organic and Biological Analytical Chemistry Group (OBiAChem), MolSys Research Unit, Liège University, Belgium
Focant, Jean-François ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique ; Organic and Biological Analytical Chemistry Group (OBiAChem), MolSys Research Unit, Liège University, Belgium
Language :
English
Title :
Theoretical modeling and machine learning-based data processing workflows in comprehensive two-dimensional gas chromatography-A review.
F.R.S.-FNRS - Fonds de la Recherche Scientifique FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen Fonds Léon Fredericq
Funding text :
This research was funded by the FWO /FNRS Belgium EOS Grant 30897864 “Chemical Information Mining in a Complex World”, F.R.S.-F.N.R.S, and Léon Fredericq Foundation scientific grants.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bartle, K.D., Myers, P., History of gas chromatography. TrAC Trends Anal. Chem. 21 (2002), 547–557, 10.1016/S0165-9936(02)00806-3.
Golay, M.J.E., J. Chromatogr. Libr. 17 (1979), 109–114, 10.1016/S0301-4770(08)60640-5.
Eiceman, G.A., Gardea-Torresdey, J., Overton, E., Carney, K., Dorman, F., Gas chromatography. Anal. Chem. 74 (2002), 2771–2780, 10.1021/AC020210P.
Špánik, I., Machyňáková, A., Recent applications of gas chromatography with high-resolution mass spectrometry. J. Sep. Sci. 41 (2018), 163–179, 10.1002/JSSC.201701016.
Poole, C.F., Gas Chromatography. second ed., 2021, Elsevier.
Liu, Z., Phillips, J.B., Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. J. Chromatogr. Sci. 29 (1991), 227–231, 10.1093/CHROMSCI/29.6.227.
Mommers, J., van der Wal, S., Column selection and optimization for comprehensive two-dimensional gas chromatography: a review. Crit. Rev. Anal. Chem. 51 (2021), 183–202, 10.1080/10408347.2019.1707643.
Cortes, H.J., Winniford, B., Luong, J., Pursch, M., Comprehensive two dimensional gas chromatography review. J. Sep. Sci. 32 (2009), 883–904, 10.1002/JSSC.200800654.
Meinert, C., Meierhenrich, U.J., A new dimension in separation science: comprehensive two-dimensional gas chromatography. Angew. Chem. - Int. Ed. 51 (2012), 10460–10470, 10.1002/ANIE.201200842.
Di Giovanni, N., Meuwis, M.A., Louis, E., Focant, J.F., Untargeted serum metabolic profiling by comprehensive two-dimensional gas chromatography-high-resolution time-of-flight mass spectrometry. J. Proteome Res. 19 (2020), 1013–1028, 10.1021/acs.jproteome.9b00535.
Pesesse, R., Stefanuto, P.H., Schleich, F., Louis, R., Focant, J.F., Multimodal chemometric approach for the analysis of human exhaled breath in lung cancer patients by TD-GC × GC-TOFMS. J. Chromatogr. B 1114–1115 (2019), 146–153, 10.1016/j.jchromb.2019.01.029.
Schleich, F.N., Zanella, D., Stefanuto, P.H., Bessonov, K., Smolinska, A., Dallinga, J.W., Henket, M., Paulus, V., Guissard, F., Graff, S., Moermans, C., Wouters, E.F.M., Van Steen, K., Van Schooten, F.J., Focant, J.F., Louis, R., Exhaled volatile organic compounds are able to discriminate between neutrophilic and eosinophilic asthma. Am. J. Respir. Crit. Care Med. 200 (2019), 444–453, 10.1164/rccm.201811-2210OC.
Libarondi, M., Comparing the capabilities of time-of-flight and quadrupole mass spectrometers. LCGC Suppl. 8 (2010), 28–33 https://www.chromatographyonline.com/view/comparing-capabilities-time-flight-and-quadrupole-mass-spectrometers-0 accessed May 23, 2023.
Harynuk, J., Górecki, T., Experimental variables in GC × GC: a complex interplay. Am. Lab. 39 (2007), 36–39.
Lu, X., Kong, H., Li, H., Ma, C., Tian, J., Xu, G., Resolution prediction and optimization of temperature programme in comprehensive two-dimensional gas chromatography. J. Chromatogr. A 1086 (2005), 175–184, 10.1016/j.chroma.2005.05.105.
Dorman, F.L., Schettler, P.D., English, C.M., Patwardhant, D.V., Predicting gas chromatographic separation and stationary-phase selectivity using computer modeling. Anal. Chem. 74 (2002), 2133–2138, 10.1021/ac0110496.
McGinitie, T.M., Harynuk, J.J., Prediction of retention times in comprehensive two-dimensional gas chromatography using thermodynamic models. J. Chromatogr. A 1255 (2012), 184–189, 10.1016/j.chroma.2012.02.023.
Gaida, M., Franchina, F.A., Stefanuto, P.-H., Focant, J.-F., Top-down approach to retention time prediction in comprehensive two-dimensional gas chromatography–mass spectrometry. Anal. Chem. 94 (2022), 17081–17089, 10.1021/acs.analchem.2c03107.
Zou, Y., Gaida, M., Franchina, F.A., Stefanuto, P.H., Focant, J., Distinguishing between decaffeinated and regular coffee by HS-SPME-GC × GC-TOFMS, chemometrics, and machine learning. Molecules, 27, 2022, 16.
Reichenbach, S.E., Zini, C.A., Nicolli, K.P., Welke, J.E., Cordero, C., Tao, Q., Benchmarking machine learning methods for comprehensive chemical fingerprinting and pattern recognition. J. Chromatogr. A 1595 (2019), 158–167, 10.1016/J.CHROMA.2019.02.027.
Beccaria, M., Mellors, T.R., Petion, J.S., Rees, C.A., Nasir, M., Systrom, H.K., Sairistil, J.W., Jean-Juste, M.A., Rivera, V., Lavoile, K., Severe, P., Pape, J.W., Wright, P.F., Hill, J.E., Preliminary investigation of human exhaled breath for tuberculosis diagnosis by multidimensional gas chromatography—Time of flight mass spectrometry and machine learning. J. Chromatogr. B. 1074–1075 (2018), 46–50, 10.1016/J.JCHROMB.2018.01.004.
Purcaro, G., Rees, C.A., Melvin, J.A., Bomberger, J.M., Hill, J.E., Volatile fingerprinting of pseudomonas aeruginosa and respiratory syncytial virus infection in an in vitro cystic fibrosis co-infection model. J. Breath Res., 12, 2018, 046001, 10.1088/1752-7163/AAC2F1.
Beccaria, M., Franchina, F.A., Nasir, M., Mellors, T., Hill, J.E., Purcaro, G., Investigating bacterial volatilome for the classification and identification of mycobacterial species by HS-SPME-GC-MS and machine learning. Molecules, 26, 2021, 10.3390/MOLECULES26154600.
Carbonell, J.G., Michalski, R.S., Mitchell, T.M., An overview of machine learning. Mach. Learn., 1983, Morgan Kaufmann, 3–23, 10.1016/B978-0-08-051054-5.50005-4.
Matyushin, D.D., Sholokhova, A.Y., Buryak, A.K., Deep learning based prediction of gas chromatographic retention indices for a wide variety of polar and mid-polar liquid stationary phases. Int. J. Mol. Sci., 22, 2021, 9194, 10.3390/IJMS22179194/S1.
Kobayashi, Y., Yoshida, K., Automated retention time prediction of new psychoactive substances in gas chromatography. Procedia Comput. Sci. 207 (2022), 654–663, 10.1016/J.PROCS.2022.09.120.
Randazzo, G.M., Bileck, A., Danani, A., Vogt, B., Groessl, M., Steroid identification via deep learning retention time predictions and two-dimensional gas chromatography-high resolution mass spectrometry. J. Chromatogr. A, 1612, 2020, 460661, 10.1016/j.chroma.2019.460661.
Beens, J., Tijssen, R., Blomberg, J., Prediction of comprehensive two-dimensional gas chromatographic separations. A theoretical and practical exercise. J. Chromatogr. A 822 (1998), 233–251, 10.1016/S0021-9673(98)00649-9.
Castello, G., Moretti, P., Vezzani, S., Retention models for programmed gas chromatography. J. Chromatogr. A 1216 (2009), 1607–1623, 10.1016/j.chroma.2008.11.049.
Zhu, S., Lu, X., Qiu, Y., Pang, T., Kong, H., Wu, C., Xu, G., Determination of retention indices in constant inlet pressure mode and conversion among different column temperature conditions in comprehensive two-dimensional gas chromatography. J. Chromatogr. A 1150 (2007), 28–36, 10.1016/J.CHROMA.2006.09.026.
Jaramillo, R., Dorman, F.L., Thermodynamic modeling of comprehensive two dimensional gas chromatography isovolatility curves for second dimension retention indices based analyte identification. J. Chromatogr. A, 1622, 2020, 10.1016/J.CHROMA.2020.461111.
Lu, X., Kong, H., Li, H., Ma, C., Tian, J., Xu, G., Resolution prediction and optimization of temperature programme in comprehensive two-dimensional gas chromatography. J. Chromatogr. A 1086 (2005), 175–184, 10.1016/J.CHROMA.2005.05.105.
Dorman, F.L., Schettler, P.D., Vogt, L.A., Cochran, J.W., Using computer modeling to predict and optimize separations for comprehensive two-dimensional gas chromatography. J. Chromatogr. A 1186 (2008), 196–201, 10.1016/j.chroma.2007.12.039.
Stultz, C., Jaramillo, R., Teehan, P., Dorman, F., Comprehensive two-dimensional gas chromatography thermodynamic modeling and selectivity evaluation for the separation of polychlorinated dibenzo-p-dioxins and dibenzofurans in fish tissue matrix. J. Chromatogr. A, 1626, 2020, 10.1016/J.CHROMA.2020.461311.
Pollo, B.J., Teixeira, C.A., Belinato, J.R., Furlan, M.F., de M. Cunha, I.C., Vaz, C.R., Volpato, G.V., Augusto, F., Chemometrics, comprehensive two-dimensional gas chromatography and “omics” sciences: basic tools and recent applications. TrAC Trends Anal. Chem., 134, 2021, 116111, 10.1016/J.TRAC.2020.116111.
Stefanuto, P.H., Smolinska, A., Focant, J.F., Advanced chemometric and data handling tools for GC × GC-TOF-MS: application of chemometrics and related advanced data handling in chemical separations. TrAC - Trends Anal. Chem., 139, 2021, 10.1016/j.trac.2021.116251.
Trinklein, T.J., Cain, C.N., Ochoa, G.S., Schöneich, S., Mikaliunaite, L., Synovec, R.E., Recent advances in GC × GC and chemometrics to address emerging challenges in nontargeted analysis. Anal. Chem. 95 (2023), 264–286, 10.1021/acs.analchem.2c04235.
Prebihalo, S.E., Berrier, K.L., Freye, C.E., Bahaghighat, H.D., Moore, N.R., Pinkerton, D.K., Synovec, R.E., Multidimensional gas chromatography: advances in instrumentation, chemometrics, and applications. Anal. Chem. 90 (2018), 505–532, 10.1021/ACS.ANALCHEM.7B04226.
Vendeuvre, C., Bertoncini, F., Thiébaut, D., Martin, M., Hennion, M.C., Evaluation of a retention model in comprehensive two-dimensional gas chromatography. J. Sep. Sci. 28 (2005), 1129–1136, 10.1002/JSSC.200401933.
Seeley, J.V., Seeley, S.K., Model for predicting comprehensive two-dimensional gas chromatography retention times. J. Chromatogr. A 1172 (2007), 72–83, 10.1016/J.CHROMA.2007.09.058.
Western, R.J., Marriott, P.J., Retention correlation maps in comprehensive two-dimensional gas chromatography. J. Sep. Sci. 25 (2002), 832–838, 10.1002/1615-9314.
Western, R.J., Marriott, P.J., Methods for generating second dimension retention index data in comprehensive two-dimensional gas chromatography. J. Chromatogr. A 1019 (2003), 3–14, 10.1016/J.CHROMA.2003.09.006.
Bieri, S., Marriott, P.J., Generating multiple independent retention index data in dual-secondary column comprehensive two-dimensional gas chromatography. Anal. Chem. 78 (2006), 8089–8097, 10.1021/ac060869l.
Arey, J.S., Nelson, R.K., Xu, L., Reddy, C.M., Using comprehensive two-dimensional gas chromatography retention indices to estimate environmental partitioning properties for a complete set of diesel fuel hydrocarbons. Anal. Chem. 77 (2005), 7172–7182, 10.1021/ac051051n.
Von Mühlen, C., Marriott, P.J., Retention indices in comprehensive two-dimensional gas chromatography. Anal. Bioanal. Chem. 401 (2011), 2351–2360, 10.1007/S00216-011-5247-1/TABLES/1.
d'Acampora Zellner, B., Bicchi, C., Dugo, P., Rubiolo, P., Dugo, G., Mondello, L., Linear retention indices in gas chromatographic analysis: a review. Flavour Fragr. J. 23 (2008), 297–314, 10.1002/FFJ.1887.
Jiang, M., Facile approach for calculation of second dimensional retention indices in comprehensive two dimensional gas chromatography with single injection. Anal. Chem. 91 (2019), 4085–4091, 10.1021/acs.analchem.8b05717.
Veenaas, C., Haglund, P., A retention index system for comprehensive two-dimensional gas chromatography using polyethylene glycols. J. Chromatogr. A 1536 (2018), 67–74, 10.1016/J.CHROMA.2017.08.062.
Jiang, M., Kulsing, C., Nolvachai, Y., Marriott, P.J., Two-dimensional retention indices improve component identification in comprehensive two-dimensional gas chromatography of saffron. Anal. Chem. 87 (2015), 5753–5761, 10.1021/acs.analchem.5b00953.
Mazur, D.M., Zenkevich, I.G., Artaev, V.B., Polyakova, O.V., Lebedev, A.T., Regression algorithm for calculating second-dimension retention indices in comprehensive two-dimensional gas chromatography. J. Chromatogr. A 1569 (2018), 178–185, 10.1016/J.CHROMA.2018.07.038.
Dimandja, J.M.D., Clouden, G.C., Colón, I., Focant, J.F., Cabey, W.V., Parry, R.C., Standardized test mixture for the characterization of comprehensive two-dimensional gas chromatography columns: the Phillips mix. J. Chromatogr. A 1019 (2003), 261–272, 10.1016/J.CHROMA.2003.09.027.
S. Bieri, P.J. Marriott, Dual-injection system with multiple injections for determining bidimensional retention indexes in comprehensive two-dimensional gas chromatography, (2008). https://doi.org/10.1021/ac071367q.
Beens, J., Janssen, H.G., Adahchour, M., Brinkman, U.A.T., Flow regime at ambient outlet pressure and its influence in comprehensive two-dimensional gas chromatography. J. Chromatogr. A 1086 (2005), 141–150, 10.1016/j.chroma.2005.05.086.
Harynuk, J., Górecki, T., Flow model for coupled-column gas chromatography systems. J. Chromatogr. A 1086 (2005), 135–140, 10.1016/J.CHROMA.2005.06.008.
Poole, C.F., Poole, S.K., Column selectivity from the perspective of the solvation parameter model. J. Chromatogr. A 965 (2002), 263–299, 10.1016/S0021-9673(01)01361-9.
Seeley, J.V., Libby, E.M., Edwards, K.A.H., Seeley, S.K., Solvation parameter model of comprehensive two-dimensional gas chromatography separations. J. Chromatogr. A 1216 (2009), 1650–1657, 10.1016/J.CHROMA.2008.07.060.
Kulsing, C., Nolvachai, Y., Zeng, A.X., Chin, S.T., Mitrevski, B., Marriott, P.J., From molecular structures of ionic liquids to predicted retention of fatty acid methyl esters in comprehensive two-dimensional gas chromatography. Chempluschem 79 (2014), 790–797, 10.1002/CPLU.201300410.
D'Archivio, A.A., Incani, A., Ruggieri, F., Retention modelling of polychlorinated biphenyls in comprehensive two-dimensional gas chromatography. Anal. Bioanal. Chem. 399 (2011), 903–913, 10.1007/s00216-010-4326-z.
Veenaas, C., Linusson, A., Haglund, P., Retention-time prediction in comprehensive two-dimensional gas chromatography to aid identification of unknown contaminants. Anal. Bioanal. Chem. 410 (2018), 7931–7941, 10.1007/s00216-018-1415-x.
Blumberg, L.M., Distribution-centric 3-parameter thermodynamic models of partition gas chromatography. J. Chromatogr. A 1491 (2017), 159–170, 10.1016/j.chroma.2017.02.047.
Vezzani, S., Moretti, P., Castello, G., Fast and accurate method for the automatic prediction of programmed-temperature retention times. J. Chromatogr. A 677 (1994), 331–343, 10.1016/0021-9673(94)80161-4.
Aldaeus, F., Thewalim, Y., Colmsjö, A., Prediction of retention times of polycyclic aromatic hydrocarbons and n-alkanes in temperature-programmed gas chromatography. Anal. Bioanal. Chem. 389 (2007), 941–950, 10.1007/s00216-007-1528-0.
Gonzalez, F.R., Nardillo, A.M., Retention index in temperature-programmed gas chromatography. J. Chromatogr. A 842 (1999), 29–49, 10.1016/S0021-9673(99)00158-2.
Karolat, B., Harynuk, J., Prediction of gas chromatographic retention time via an additive thermodynamic model. J. Chromatogr. A 1217 (2010), 4862–4867, 10.1016/j.chroma.2010.05.037.
Clarke, E.C.W., Glew, D.N., Evaluation of thermodynamic functions from equilibrium constants. Trans. Faraday Soc., 62, 1966, 539, 10.1039/tf9666200539.
Gaida, M., Franchina, F.A., Stefanuto, P.-H., Focant, J.-F., Modeling approaches for temperature-programmed gas chromatographic retention times under vacuum outlet conditions. J. Chromatogr. A, 1651, 2021, 462300, 10.1016/j.chroma.2021.462300.
Stevenson, K.A.J.M., Blumberg, L.M., Harynuk, J.J., Thermodynamics-based retention maps to guide column choices for comprehensive multi-dimensional gas chromatography. Anal. Chim. Acta 1086 (2019), 133–141, 10.1016/j.aca.2019.08.011.
Zhu, S., He, S., Worton, D.R., Goldstein, A.H., Predictions of comprehensive two-dimensional gas chromatography separations from isothermal data. J. Chromatogr. A 1233 (2012), 147–151.
Hou, S., Stevenson, K.A.J.M., Harynuk, J.J., A simple, fast, and accurate thermodynamic-based approach for transfer and prediction of gas chromatography retention times between columns and instruments Part I: estimation of reference column geometry and thermodynamic parameters. J. Sep. Sci. 41 (2018), 2544–2552, 10.1002/JSSC.201701343.
Hou, S., Stevenson, K.A.J.M., Harynuk, J.J., A simple, fast, and accurate thermodynamic-based approach for transfer and prediction of GC retention times between columns and instruments Part II: estimation of target column geometry. J. Sep. Sci. 41 (2018), 2553–2558, 10.1002/JSSC.201701344.
Hou, S., Stevenson, K.A.J.M., Harynuk, J.J., A simple, fast, and accurate thermodynamic-based approach for transfer and prediction of gas chromatography retention times between columns and instruments Part III: retention time prediction on target column. J. Sep. Sci. 41 (2018), 2559–2564, 10.1002/jssc.201701345.
Leppert, J., Brehmer, T., Wüst, M., Boeker, P., Estimation of retention parameters from temperature programmed gas chromatography. J. Chromatogr. A, 1699, 2023, 464008, 10.1016/J.CHROMA.2023.464008.
McGinitie, T.M., Ebrahimi-Najafabadi, H., Harynuk, J.J., Rapid determination of thermodynamic parameters from one-dimensional programmed-temperature gas chromatography for use in retention time prediction in comprehensive multidimensional chromatography. J. Chromatogr. A 1325 (2014), 204–212, 10.1016/j.chroma.2013.12.008.
McGinitie, T.M., Harynuk, J.J., Considerations for the automated collection of thermodynamic data in gas chromatography. J. Sep. Sci. 35 (2012), 2228–2232, 10.1002/JSSC.201200192.
McGinitie, T.M., Ebrahimi-Najafabadi, H., Harynuk, J.J., A standardized method for the calibration of thermodynamic data for the prediction of gas chromatographic retention times. J. Chromatogr. A, 2014, 10.1016/j.chroma.2014.01.019.
Snijders, H., Janssen, H.G., Cramers, C., Optimization of temperature-programmed gas chromatographic separations I. Prediction of retention times and peak widths from retention indices. J. Chromatogr. A 718 (1995), 339–355, 10.1016/0021-9673(95)00692-3.
Barcaru, A., Anroedh-Sampat, A., Janssen, H.G., Retention time prediction in temperature-programmed, comprehensive two-dimensional gas chromatography: modeling and error assessment. J. Chromatogr. A 1368 (2014), 190–198.
Jaramillo, R., Dorman, F.L., Retention time prediction in thermally modulated comprehensive two-dimensional gas chromatography: correcting second dimension retention time modeling error. J. Chromatogr. A 1581–1582 (2018), 116–124, 10.1016/j.chroma.2018.10.054.
Jaramillo, R., Dorman, F.L., Retention time prediction of hydrocarbons in cryogenically modulated comprehensive two-dimensional gas chromatography: a method development and translation application. J. Chromatogr. A, 1612, 2019, 460696.
Silva, A.C.A., Ebrahimi-Najafadabi, H., McGinitie, T.M., Casilli, A., Pereira, H.M.G., Aquino Neto, F.R., Harynuk, J.J., Thermodynamic-based retention time predictions of endogenous steroids in comprehensive two-dimensional gas chromatography. Anal. Bioanal. Chem. 407 (2015), 4091–4099, 10.1007/s00216-015-8627-0.
Burel, A., Vaccaro, M., Cartigny, Y., Tisse, S., Coquerel, G., Cardinael, P., Retention modeling and retention time prediction in gas chromatography and flow-modulation comprehensive two-dimensional gas chromatography: the contribution of pressure on solute partition. J. Chromatogr. A 1485 (2017), 101–119, 10.1016/j.chroma.2017.01.011.
Brehmer, T., Duong, B., Marquart, M., Friedemann, L., Faust, P.J., Boeker, P., Wüst, M., Leppert, J., Retention database for prediction, simulation, and optimization of GC separations. ACS Omega 8 (2023), 19708–19718, 10.1021/acsomega.3c01348.
Quiroz-Moreno, C., Furlan, M.F., Belinato, J.R., Augusto, F., Alexandrino, G.L., Mogollón, N.G.S., RGCxGC toolbox: an R-package for data processing in comprehensive two-dimensional gas chromatography-mass spectrometry. Microchem. J., 156, 2020, 104830, 10.1016/J.MICROC.2020.104830.
Dhall, D., Kaur, R., Juneja, M., Machine learning: a review of the algorithms and its applications. Lect. Notes Electr. Eng. 597 (2020), 47–63, 10.1007/978-3-030-29407-6_5.
Jimenez-Carvelo, A.M., Cuadros-Rodríguez, L., Data mining/machine learning methods in foodomics. Curr. Opin. Food Sci. 37 (2021), 76–82, 10.1016/J.COFS.2020.09.008.
Engel, J., Gerretzen, J., Szymańska, E., Jansen, J.J., Downey, G., Blanchet, L., Buydens, L.M.C., Breaking with trends in pre-processing?. TrAC Trends Anal. Chem. 50 (2013), 96–106, 10.1016/J.TRAC.2013.04.015.
Gromski, P.S., Xu, Y., Kotze, H.L., Correa, E., Ellis, D.I., Armitage, E.G., Turner, M.L., Goodacre, R., Influence of missing values substitutes on multivariate analysis of metabolomics data. Metabolites 4 (2014), 433–452, 10.3390/METABO4020433.
Sudol, P.E., Pierce, K.M., Prebihalo, S.E., Skogerboe, K.J., Wright, B.W., Synovec, R.E., Development of gas chromatographic pattern recognition and classification tools for compliance and forensic analyses of fuels: a review. Anal. Chim. Acta 1132 (2020), 157–186, 10.1016/J.ACA.2020.07.027.
Pierce, K.M., Hope, J.L., Johnson, K.J., Wright, B.W., Synovec, R.E., Classification of gasoline data obtained by gas chromatography using a piecewise alignment algorithm combined with feature selection and principal component analysis. J. Chromatogr. A 1096 (2005), 101–110, 10.1016/J.CHROMA.2005.04.078.
Fawagreh, K., Gaber, M.M., Elyan, E., Random forests: from early developments to recent advancements. Syst. Sci. Control Eng. 2 (2014), 602–609, 10.1080/21642583.2014.956265.
Biau, G., Analysis of a random forests model. J. Mach. Learn. Res. 13 (2012), 1063–1095.
Salcedo-Sanz, S., Rojo-Álvarez, J.L., Martínez-Ramón, M., Camps-Valls, G., Support vector machines in engineering: an overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 4 (2014), 234–267, 10.1002/WIDM.1125.
Lee, L.C., Liong, C.Y., Jemain, A.A., Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps. Analyst 143 (2018), 3526–3539, 10.1039/C8AN00599K.
Mathema, V.B., Duangkumpha, K., Wanichthanarak, K., Jariyasopit, N., Dhakal, E., Sathirapongsasuti, N., Kitiyakara, C., Sirivatanauksorn, Y., Khoomrung, S., CRISP: a deep learning architecture for GC × GC–TOFMS contour ROI identification, simulation and analysis in imaging metabolomics. Brief. Bioinform., 23, 2022, 10.1093/BIB/BBAB550.
Oh, J., Oldani, A., Lee, T., Shafer, L., Deep learning algorithms for assessing sustainable jet fuels from two-dimensional gas chromatography. AIAA Sci. Technol. Forum Expo. AIAA SciTech Forum 2022, 2022, 10.2514/6.2022-0228.
Cajka, T., Hajslova, J., Pudil, F., Riddellova, K., Traceability of honey origin based on volatiles pattern processing by artificial neural networks. J. Chromatogr. A 1216 (2009), 1458–1462, 10.1016/J.CHROMA.2008.12.066.
Rees, C.A., Stefanuto, P.H., Beattie, S.R., Bultman, K.M., Cramer, R.A., Hill, J.E., Sniffing out the hypoxia volatile metabolic signature of Aspergillus fumigatus. J. Breath Res., 11, 2017, 10.1088/1752-7163/AA7B3E.
Purcaro, G., Rees, C.A., Melvin, J.A., Bomberger, J.M., Hill, J.E., Volatile fingerprinting of Pseudomonas aeruginosa and respiratory syncytial virus infection in an in vitro cystic fibrosis co-infection model. J. Breath Res., 12, 2018, 10.1088/1752-7163/aac2f1.
Beccaria, M., Mellors, T.R., Petion, J.S., Rees, C.A., Nasir, M., Systrom, H.K., Sairistil, J.W., Jean-Juste, M.A., Rivera, V., Lavoile, K., Severe, P., Pape, J.W., Wright, P.F., Hill, J.E., Preliminary investigation of human exhaled breath for tuberculosis diagnosis by multidimensional gas chromatography—Time of flight mass spectrometry and machine learning. J. Chromatogr. B 1074–1075 (2018), 46–50, 10.1016/j.jchromb.2018.01.004.
Beccaria, M., Bobak, C., Maitshotlo, B., Mellors, T.R., Purcaro, G., Franchina, F.A., Rees, C.A., Nasir, M., Black, A., Hill, J.E., Exhaled human breath analysis in active pulmonary tuberculosis diagnostics by comprehensive gas chromatography-mass spectrometry and chemometric techniques. J. Breath Res., 13, 2019, 10.1088/1752-7163/aae80e.
Franklin, E.B., Yee, L.D., Aumont, B., Weber, R.J., Grigas, P., Goldstein, A.H., Ch3MS-RF: a random forest model for chemical characterization and improved quantification of unidentified atmospheric organics detected by chromatography-mass spectrometry techniques. Atmos. Meas. Tech. 15 (2022), 3779–3803, 10.5194/AMT-15-3779-2022.
Alexandrino, G.L., Prata, P.S., Augusto, F., Discriminating lacustrine and marine organic matter depositional paleoenvironments of Brazilian crude oils using comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry and supervised classification chemometric approaches. Energy Fuels 31 (2017), 170–178, 10.1021/ACS.ENERGYFUELS.6B01925.
Barberis, E., Amede, E., Khoso, S., Castello, L., Sainaghi, P.P., Bellan, M., Balbo, P.E., Patti, G., Brustia, D., Giordano, M., Rolla, R., Chiocchetti, A., Romani, G., Manfredi, M., Vaschetto, R., Metabolomics diagnosis of covid-19 from exhaled breath condensate. Metabolites, 11, 2021, 10.3390/METABO11120847.
Lima, R.A.M., Ferraz, S.M.M., Cardoso, V.G.K., Teixeira, C.A., Hantao, L.W., Authentication of fish oil (omega-3) supplements using class-oriented chemometrics and comprehensive two-dimensional gas chromatography coupled to mass spectrometry. Anal. Bioanal. Chem., 2022, 10.1007/S00216-022-04428-2.
Hall, C., Creton, B., Rauch, B., Bauder, U., Aigner, M., Probabilistic mean quantitative structure-property relationship modeling of jet fuel properties. Energy Fuels 36 (2022), 463–479, 10.1021/ACS.ENERGYFUELS.1C03334.
Sorochan Armstrong, M.D., Arredondo Campos, O.R., Bannon, C.C., de la Mata, A.P., Case, R.J., Harynuk, J.J., Global metabolome analysis of Dunaliella tertiolecta, Phaeobacter italicus R11 Co-cultures using thermal desorption—Comprehensive two-dimensional gas chromatography—Time-of-flight mass spectrometry (TD-GC × GC-TOFMS). Phytochemistry, 195, 2022, 10.1016/J.PHYTOCHEM.2021.113052.
Favela, K.A., Hartnett, M.J., Janssen, J.A., Vickers, D.W., Schaub, A.J., Spidle, H.A., Pickens, K.S., Nontargeted analysis of face masks: comparison of manual curation to automated GCxGC processing tools. J. Am. Soc. Mass Spectrom. 32 (2021), 860–871, 10.1021/JASMS.0C00318.
Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32, 10.1023/A:1010933404324.
Probst, P., Wright, M.N., Boulesteix, A., Hyperparameters and tuning strategies for random forest. WIREs Data Min. Knowl. Discov., 9, 2019, 10.1002/widm.1301.
Strozier, E.D., Mooney, D.D., Friedenberg, D.A., Klupinski, T.P., Triplett, C.A., Use of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection and random forest pattern recognition techniques for classifying chemical threat agents and detecting chemical attribution signatures. Anal. Chem. 88 (2016), 7068–7075, 10.1021/ACS.ANALCHEM.6B00725.
R Core Team, R: A Language and Environment for Statistical Computing., (n.d.). https://www.r-project.org/.
I. The MathWorks, MATLAB and Statistics Toolbox, (n.d.).
Yang, L., Shami, A., On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing 415 (2020), 295–316, 10.1016/J.NEUCOM.2020.07.061.
Rist, M.J., Roth, A., Frommherz, L., Weinert, C.H., Krüger, R., Merz, B., Bunzel, D., Mack, C., Egert, B., Bub, A., Görling, B., Tzvetkova, P., Luy, B., Hoffmann, I., Kulling, S.E., Watzl, B., Metabolite patterns predicting sex and age in participants of the Karlsruhe metabolomics and nutrition (KarMeN) study. PLoS One, 12, 2017, 10.1371/JOURNAL.PONE.0183228.
Stefanuto, P.H., Romano, R., Rees, C.A., Nasir, M., Thakuria, L., Simon, A., Reed, A.K., Marczin, N., Hill, J.E., Volatile organic compound profiling to explore primary graft dysfunction after lung transplantation. Sci. Rep. 12:1 (2022), 1–10, 10.1038/s41598-022-05994-2.
Shawe-Taylor, J., Sun, S., A review of optimization methodologies in support vector machines. Neurocomputing 74 (2011), 3609–3618, 10.1016/J.NEUCOM.2011.06.026.
Cen, Z., Lu, B., Ji, Y., Chen, J., Liu, Y., Jiang, J., Li, X., Li, X., Virus-induced breath biomarkers: a new perspective to study the metabolic responses of COVID-19 vaccinees. Talanta, 260, 2023, 10.1016/J.TALANTA.2023.124577.
Li, S., Hu, Y., Liu, W., Chen, Y., Wang, F., Lu, X., Zheng, W., Untargeted volatile metabolomics using comprehensive two-dimensional gas chromatography-mass spectrometry—A solution for orange juice authentication. Talanta, 217, 2020, 121038, 10.1016/J.TALANTA.2020.121038.
Bradley, A.P., The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 30 (1997), 1145–1159, 10.1016/S0031-3203(96)00142-2.
Li, H., Wu, X., Wu, S., Chen, L., Kou, X., Zeng, Y., Li, D., Lin, Q., Zhong, H., Hao, T., Dong, B., Chen, S., Zheng, J., Machine learning directed discrimination of virgin and recycled poly(ethylene terephthalate) based on non-targeted analysis of volatile organic compounds. J. Hazard. Mater., 436, 2022, 10.1016/J.JHAZMAT.2022.129116.
Cai, J., Luo, J., Wang, S., Yang, S., Feature selection in machine learning: a new perspective. Neurocomputing 300 (2018), 70–79, 10.1016/J.NEUCOM.2017.11.077.
Saeys, Y., Inza, I., Larrañaga, P., A review of feature selection techniques in bioinformatics. Bioinformatics 23 (2007), 2507–2517, 10.1093/BIOINFORMATICS/BTM344.
P. Cunningham, B. Kathirgamanathan, S.J. Delany, Feature selection tutorial with python examples, (2021). https://doi.org/10.48550/arXiv.2106.06437.
Dhal, P., Azad, C., A comprehensive survey on feature selection in the various fields of machine learning. Appl. Intell. 52:4 (2021), 4543–4581, 10.1007/S10489-021-02550-9.
Paiva, A.C., Hantao, L.W., Exploring a public database to evaluate consumer preference and aroma profile of lager beers by comprehensive two-dimensional gas chromatography and partial least squares regression discriminant analysis. J. Chromatogr. A, 1630, 2020, 461529, 10.1016/J.CHROMA.2020.461529.
Johnstone, I.M., Titterington, D.M., Statistical challenges of high-dimensional data. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367 (2009), 4237–4253, 10.1098/RSTA.2009.0159.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.