EEG; MEG; equivalent current dipole; variational Bayes
Abstract :
[en] In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent current dipoles and distributed source or imaging models, which use thousands of dipoles. Much methodological research has been devoted to developing sophisticated Bayesian source imaging inversion schemes, while dipoles have received less such attention. Dipole models have their advantages; they are often appropriate summaries of evoked responses or helpful first approximations. Here, we propose a variational Bayesian algorithm that enables the fast Bayesian inversion of dipole models. The approach allows for specification of priors on all the model parameters. The posterior distributions can be used to form Bayesian confidence intervals for interesting parameters, like dipole locations. Furthermore, competing models (e.g., models with different numbers of dipoles) can be compared using their evidence or marginal likelihood. Using synthetic data, we found the scheme provides accurate dipole localizations. We illustrate the advantage of our Bayesian scheme, using a multi-subject EEG auditory study, where we compare competing models for the generation of the N100 component. (C) 2007 Elsevier Inc. All rights reserved.
Disciplines :
Radiology, nuclear medicine & imaging Neurosciences & behavior
Author, co-author :
Kiebel, S. J.
Daunizeau, J.
Phillips, Christophe ; Université de Liège - ULiège > Centre de recherches du cyclotron
Friston, K. J.
Language :
English
Title :
Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG
Publication date :
15 January 2008
Journal title :
NeuroImage
ISSN :
1053-8119
eISSN :
1095-9572
Publisher :
Academic Press Inc Elsevier Science, San Diego, United States - California
Auranen T., Nummenmaa A., Hamalainen M.S., Jaaskelainen I.P., Lampinen J., Vehtari A., and Sams M. Related Articles, Links Abstract Bayesian inverse analysis of neuromagnetic data using cortically constrained multiple dipoles. Hum. Brain Mapp. 28 10 (2007) 979-994 (Oct)
Baillet S., and Garnero L. A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem. IEEE Trans. Biomed. Eng. 44 (1997) 374-385
Baillet S., Mosher J.C., and Leahy R.M. Electromagnetic brain mapping. IEEE Signal Process. Mag. 18 (2001) 14-30
Beal M.J. Variational Algorithms for Approximate Bayesian Inference (2003), University College, London
Braun C., Kaiser S., Kincses W.E., and Elbert T. Abstract Confidence interval of single dipole locations based on EEG data. Brain Topogr. 10 1 (1997) 31-39 (Fall)
Daunizeau J., Grova C., Marrelec G., Mattout J., Jbabdi S., Pelegrini-Issac M., Lina J.M., and Benali H. Free Full Text Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. NeuroImage 36 1 (2007) 69-87 (May 15)
David O., Kiebel S.J., Harrison L.M., Mattout J., Kilner J.M., and Friston K.J. Abstract Dynamic causal modeling of evoked responses in EEG and MEG. NeuroImage 30 4 (2006) 1255-1272 (May 1)
Deffke I., Sander T., Heidenreich J., Sommer W., Curio G., Trahms L., and Lueschow A. Abstract MEG/EEG sources of the 170-ms response to faces are co-localized in the fusiform gyrus. NeuroImage 35 4 (2007) 1495-1501 (May 1)
Flandin G., and Penny W.D. Bayesian fMRI data analysis with sparse spatial basis function priors. NeuroImage 34 (2007) 1108-1125
Friston K.J., Harrison L., and Penny W. Dynamic causal modelling. NeuroImage 19 (2003) 1273-1302
Friston K., Mattout J., Trujillo-Barreto N., Ashburner J., and Penny W. Variational free energy and the Laplace approximation. NeuroImage 34 (2007) 220-234
Fuchs M., Wagner M., and Kastner J. Confidence limits of dipole source reconstruction results. Clin. Neurophysiol. 115 (2004) 1442-1451
Garrido M.I., Kilner J.M., Kiebel S.J., Stephan K.E., and Friston K.J. Dynamic causal modelling of evoked potentials: a reproducibility study. NeuroImage 36 (2007) 571-580
Huang M., Aine C.J., Supek S., Best E., Ranken D., and Flynn E.R. Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography. Electroencephalogr. Clin. Neurophysiol. 108 (1998) 32-44
Jun S.C., George J.S., Pare-Blagoev J., Plis S.M., Ranken D.M., Schmidt D.M., and Wood C.C. Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data. NeuroImage 28 (2005) 84-98
Jun S.C., George J.S., Plis S.M., Ranken D.M., Schmidt D.M., and Wood C.C. Improving source detection and separation in a spatiotemporal Bayesian inference dipole analysis. Phys. Med. Biol. 51 (2006) 2395-2414
Kass R.E., and Wasserman L. The selection of prior distributions by formal rules. J. Am. Stat. Assoc. 91 (1996) 1343-1370
Kiebel S.J., David O., and Friston K.J. Abstract Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. NeuroImage 30 4 (2006) 1273-1284 (May 1)
Lutkenhoner B., and Steinstrater O. High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiol. Neuro-otol. 3 (1998) 191-213
Mattout J., Phillips C., Penny W.D., Rugg M.D., and Friston K.J. MEG source localization under multiple constraints: an extended Bayesian framework. NeuroImage 30 (2006) 753-767
Mosher J.C., Lewis P.S., and Leahy R.M. Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans. Biomed. Eng. 39 (1992) 541-557
Mosher J.C., Spencer M.E., Leahy R.M., and Lewis P.S. Error bounds for EEG and MEG dipole source localization. Electroencephalogr. Clin. Neurophysiol. 86 (1993) 303-321
Mosher J.C., Leahy R.M., and Lewis P.S. EEG and MEG: forward solutions for inverse methods. IEEE Trans. Biomed. Eng. 46 (1999) 245-259
Nummenmaa A., Auranen T., Hamalainen M.S., Jaaskelainen I.P., Lampinen J., Sams M., and Vehtari A. Hierarchical Bayesian estimates of distributed MEG sources: theoretical aspects and comparison of variational and MCMC methods. NeuroImage 35 (2007) 669-685
Oostenveld, R., 2003. Improving EEG Source Analysis using Prior Knowledge. Thesis, Katholieke Universiteit Nijmegen.
Oostenveld R., and Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin. Neurophysiol. 112 (2001) 713-719
Penny W., Kiebel S., and Friston K. Variational Bayesian inference for fMRI time series. NeuroImage 19 (2003) 727-741
Penny W.D., Stephan K.E., Mechelli A., and Friston K.J. Comparing dynamic causal models. NeuroImage 22 (2004) 1157-1172
Phillips C., Rugg M.D., and Friston K.J. Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints. NeuroImage 16 (2002) 678-695
Phillips C., Mattout J., Rugg M.D., Maquet P., and Friston K.J. An empirical Bayesian solution to the source reconstruction problem in EEG. NeuroImage 24 (2005) 997-1011
Radich B.M., and Buckley K.M. EEG dipole localization bounds and MAP algorithms for head models with parameter uncertainties. IEEE Trans. Biomed. Eng. 42 (1995) 233-241
Sato M.A., Yoshioka T., Kajihara S., Toyama K., Goda N., Doya K., and Kawato M. Hierarchical Bayesian estimation for MEG inverse problem. NeuroImage 23 (2004) 806-826
Schmidt D.M., George J.S., and Wood C.C. Bayesian inference applied to the electromagnetic inverse problem. Hum. Brain Mapp. 7 (1999) 195-212
Supek S., and Aine C.J. Simulation studies of multiple dipole neuromagnetic source localization: model order and limits of source resolution. IEEE Trans. Biomed. Eng. 40 (1993) 529-540
Woolrich M.W., and Behrens T.E. Variational Bayes inference of spatial mixture models for segmentation. IEEE Trans. Med. Imag. 25 (2006) 1380-1391
Yvert B., Crouzeix-Cheylus A., and Pernier J. Fast realistic modeling in bioelectromagnetism using lead-field interpolation. Hum. Brain Mapp. 14 (2001) 48-63
Zhang Z. A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres. Phys. Med. Biol. 40 (1995) 335-349
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.